基于元胞自动机和人工神经网络的python代码
时间: 2024-09-23 11:14:42 浏览: 51
基于元胞自动机(Cellular Automata, CA)和人工神经网络(Artificial Neural Networks, ANN)的Python代码通常涉及两个部分:一个是实现元胞自动机的基本规则和迭代过程,另一个是构建和训练人工神经网络模型。
**元胞自动机示例(Conway's Game of Life):**
```python
import numpy as np
def game_of_life(state, rules):
new_state = state.copy()
for i in range(state.shape[0]):
for j in range(state.shape[1]):
neighbors_count = sum(state[i:i+3, j:j+3].flatten())
if (state[i, j] and (neighbors_count == 2 or neighbors_count == 3)) or (not state[i, j] and neighbors_count == 3):
new_state[i, j] = True
else:
new_state[i, j] = False
return new_state
# 初始化状态矩阵
state = np.array([[0, 1, 0], [0, 0, 1], [1, 1, 1]])
rules = ({(True, True, False): True,
(True, True, True): True,
...}) # 自定义规则集
for _ in range(10): # 运行10步
state = game_of_life(state, rules)
print(state)
```
**人工神经网络示例(使用Keras):**
```python
from keras.models import Sequential
from keras.layers import Dense
# 假设我们有一个简单的线性分类任务
model = Sequential()
model.add(Dense(16, input_dim=8, activation='relu')) # 输入层
model.add(Dense(8, activation='relu')) # 隐藏层
model.add(Dense(1, activation='sigmoid')) # 输出层(二分类)
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# 假设data是一个包含输入特征x和目标标签y的numpy数组
model.fit(x, y, epochs=50, validation_split=0.2) # 训练模型
```
阅读全文