请写代码:xgboost用于提升pytorch模型以学习波士顿房价,且数据划分为训练集和测试集
时间: 2024-02-19 17:03:36 浏览: 137
xgboost代码
好的,以下是使用XGBoost提升PyTorch模型以学习波士顿房价,并将数据集划分为训练集和测试集的代码示例:
```python
import torch
import xgboost as xgb
import numpy as np
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
# Load Boston Housing dataset
boston = load_boston()
X, y = boston.data, boston.target
# Split dataset into train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Define regression model using PyTorch
class RegressionModel(torch.nn.Module):
def __init__(self):
super(RegressionModel, self).__init__()
self.layer1 = torch.nn.Linear(13, 64)
self.layer2 = torch.nn.Linear(64, 32)
self.layer3 = torch.nn.Linear(32, 1)
def forward(self, x):
x = torch.relu(self.layer1(x))
x = torch.relu(self.layer2(x))
x = self.layer3(x)
return x
# Initialize PyTorch model and optimizer
model = RegressionModel()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# Train PyTorch model without XGBoost
for epoch in range(1000):
optimizer.zero_grad()
y_pred = model(torch.from_numpy(X_train).float())
loss = torch.nn.functional.mse_loss(y_pred, torch.from_numpy(y_train).float())
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch:', epoch, 'Loss:', loss.item())
# Use XGBoost to boost PyTorch model
xgb_model = xgb.XGBRegressor()
xgb_model.fit(X_train, y_train)
xgb_pred = xgb_model.predict(X_train)
xgb_pred_tensor = torch.from_numpy(xgb_pred).float()
for epoch in range(1000):
optimizer.zero_grad()
y_pred = model(xgb_pred_tensor)
loss = torch.nn.functional.mse_loss(y_pred, torch.from_numpy(y_train).float())
loss.backward()
optimizer.step()
if epoch % 100 == 0:
print('Epoch:', epoch, 'Loss:', loss.item())
# Make predictions using trained PyTorch model with XGBoost
xgb_pred_test = xgb_model.predict(X_test)
xgb_pred_test_tensor = torch.from_numpy(xgb_pred_test).float()
y_pred = model(xgb_pred_test_tensor).detach().numpy()
# Compute mean squared error of PyTorch model with XGBoost
mse = np.mean((y_pred - y_test)**2)
print('Mean squared error with XGBoost:', mse)
```
在这个示例中,我们首先使用PyTorch训练一个回归模型,并在训练过程中输出每个epoch的损失。然后,我们使用XGBoost模型对训练数据进行预测,并将预测结果作为PyTorch模型的输入,以提升模型的性能。最后,我们使用训练好的PyTorch模型和XGBoost模型对测试数据进行预测,并计算模型的均方误差。
阅读全文