Transformer代码
时间: 2023-07-03 14:22:02 浏览: 94
以下是一个简单的Transformer模型的Python代码,用于机器翻译任务:
```python
import torch
import torch.nn.functional as F
from torch import nn
class TransformerModel(nn.Module):
def __init__(self, vocab_size, embedding_size, hidden_size, num_layers, num_heads, dropout_prob):
super(TransformerModel, self).__init__()
self.embedding_size = embedding_size
self.hidden_size = hidden_size
self.num_layers = num_layers
self.num_heads = num_heads
self.embedding = nn.Embedding(vocab_size, embedding_size)
self.positional_encoding = PositionalEncoding(embedding_size, dropout_prob)
encoder_layer = nn.TransformerEncoderLayer(embedding_size, num_heads, hidden_size, dropout_prob)
self.encoder = nn.TransformerEncoder(encoder_layer, num_layers)
decoder_layer = nn.TransformerDecoderLayer(embedding_size, num_heads, hidden_size, dropout_prob)
self.decoder = nn.TransformerDecoder(decoder_layer, num_layers)
self.output_layer = nn.Linear(embedding_size, vocab_size)
def forward(self, src, tgt):
src_embeddings = self.embedding(src)
tgt_embeddings = self.embedding(tgt)
src_embeddings = src_embeddings * (self.embedding_size ** 0.5)
src_embeddings = self.positional_encoding(src_embeddings)
tgt_embeddings = tgt_embeddings * (self.embedding_size ** 0.5)
tgt_embeddings = self.positional_encoding(tgt_embeddings)
memory = self.encoder(src_embeddings)
output = self.decoder(tgt_embeddings, memory)
output = self.output_layer(output)
return F.log_softmax(output, dim=-1)
class PositionalEncoding(nn.Module):
def __init__(self, embedding_size, dropout_prob, max_length=5000):
super(PositionalEncoding, self).__init__()
pe = torch.zeros(max_length, embedding_size)
position = torch.arange(0, max_length, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, embedding_size, 2).float() * (-math.log(10000.0) / embedding_size))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
self.dropout = nn.Dropout(dropout_prob)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
```
注:以上代码仅为示例,可能存在一些不完善的地方。
阅读全文