ensorflow1.9想使用卷积操作将维度为(468,500)的tensor1和维度为(1,11100)的tensor2融合产生维度为(1,11100)的tensor3,且希望tensor3中有较少tensor1的信息
时间: 2023-06-09 18:02:31 浏览: 103
可以使用tf.nn.conv1d函数进行卷积操作,其中参数input表示输入的tensor1,参数filter表示卷积核的tensor2,参数stride表示卷积核的步长,参数padding表示边界填充方式,参数dilation_rate表示卷积核的扩张倍数。可以通过调整卷积核的大小和步长,控制tensor1信息在tensor3中的占比。具体实现可以参考以下代码示例:
```
import tensorflow as tf
# 定义输入tensor1和tensor2
tensor1 = tf.placeholder(tf.float32, [None, 468, 500])
tensor2 = tf.placeholder(tf.float32, [1, 11100])
# 定义卷积核大小和步长
filter_size = 5
stride = 1
# 定义卷积核filter,维度为[filter_size, tensor1_channel, tensor3_channel]
filter = tf.Variable(tf.random_normal([filter_size, 500, 11100]))
# 对tensor1执行卷积操作,输出维度为[batch_size, (468-filter_size+2*padding)/stride+1, 11100]
conv = tf.nn.conv1d(tensor1, filter, stride, padding='SAME')
# 对卷积结果进行reshape,输出维度为[batch_size, (468-filter_size+2*padding)/stride+1, 11100]
conv_reshaped = tf.reshape(conv, [-1, tf.shape(conv)[1], 11100])
# 将卷积结果与tensor2相乘,输出维度为[batch_size, (468-filter_size+2*padding)/stride+1, 11100]
tensor3_mul = tf.multiply(conv_reshaped, tensor2)
# 对卷积结果进行缩减求和,输出维度为[batch_size, 1, 11100]
tensor3 = tf.reduce_sum(tensor3_mul, axis=1, keepdims=True)
# 训练模型并执行预测操作
...
```
阅读全文