能再搭建一个吗
时间: 2024-02-18 15:04:53 浏览: 65
如何快速搭建一个微服务架构?
当然可以,这是另一个基于PyTorch的交通标志识别模型的代码示例,它使用ResNet18作为特征提取器,并使用全连接层进行分类。
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
# 定义模型
class TrafficSignNet(nn.Module):
def __init__(self, num_classes):
super(TrafficSignNet, self).__init__()
self.resnet = models.resnet18(pretrained=True)
self.resnet.fc = nn.Linear(512, num_classes)
def forward(self, x):
x = self.resnet(x)
return x
# 加载数据集
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor()
])
train_set = datasets.ImageFolder('train_dir', transform=transform)
train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=True)
test_set = datasets.ImageFolder('test_dir', transform=transform)
test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=True)
# 训练模型
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = TrafficSignNet(num_classes=43).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print("Epoch %d loss: %.3f" % (epoch+1, running_loss/len(train_loader)))
# 测试模型
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data[0].to(device), data[1].to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print("Accuracy: %.2f%%" % (100 * correct / total))
```
在这个示例中,我们定义了一个名为`TrafficSignNet`的类,该类继承自`nn.Module`。我们使用了预训练的ResNet18作为特征提取器,然后将其输出的特征向量传递给一个全连接层进行分类。我们使用的是交叉熵损失函数和Adam优化器。我们使用的数据集是`ImageFolder`,它将图像和标签组织在不同的文件夹中。我们将训练集和测试集分别放在`train_dir`和`test_dir`文件夹中。在训练过程中,我们迭代数据批次,并使用反向传播来更新模型参数。在测试过程中,我们计算模型在测试集上的准确率。
阅读全文