loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.0001)
时间: 2024-03-31 10:38:57 浏览: 57
这段代码用于定义损失函数和优化器,以便在训练模型时计算损失和更新模型参数。
在这里,我们使用交叉熵损失函数nn.CrossEntropyLoss(),该损失函数常用于多分类问题中。在图像分类任务中,我们需要将每张图像分到正确的类别中,因此可以使用交叉熵损失函数来度量模型预测结果与真实标签之间的差异。
同时,我们使用Adam优化器optim.Adam来更新模型参数。Adam是一种常用的基于梯度的优化算法,可以自适应地调整学习率,从而加快模型训练速度。在这里,我们将学习率lr设置为0.0001,可以根据实际情况进行调整。
相关问题
编写pytorch代码,定义LSTMAttention模型,定义一个FA_CPSO优化算法,用FA_CPSO算法有优化模型中神经元个数、dropout比率、batch_size、学习率等超参数,将优化好的超参数传递给模型,在特征训练集X_train.csv和标签训练集y_train.csv上训练模型,将最优的参数设置给模型,在特征测试集X_test.csv和标签测试集y_test.csv上测试模型,进一步优化模型,将优化后的参数设置给模型,并输出测试损失,绘制测试集的预测值和实际值,计算测试集的均方根误差,在预测集上进行预测,设定标签数据最大值的85%为警戒线,绘制预测集的实际值到达的时间和预测值到达的时间
好的,我了解了你的要求。首先,需要安装pytorch和pandas库。
以下是代码实现:
```python
import torch
import torch.nn as nn
import pandas as pd
import numpy as np
from scipy.stats import uniform
from sko.PSO import PSO
# 定义LSTMAttention模型
class LSTMAttention(nn.Module):
def __init__(self, input_size, hidden_size, output_size, num_layers, dropout):
super(LSTMAttention, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True, bidirectional=True)
self.dropout = nn.Dropout(dropout)
self.fc1 = nn.Linear(hidden_size * 2, output_size)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
h0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers * 2, x.size(0), self.hidden_size).to(device)
out, _ = self.lstm(x, (h0, c0))
out = self.dropout(out)
out = self.fc1(out[:, -1, :])
out = self.softmax(out)
return out
# 加载数据
X_train = pd.read_csv('X_train.csv')
y_train = pd.read_csv('y_train.csv')
X_test = pd.read_csv('X_test.csv')
y_test = pd.read_csv('y_test.csv')
# 转换数据格式
X_train = torch.from_numpy(X_train.values).float()
y_train = torch.from_numpy(y_train.values).long().squeeze()
X_test = torch.from_numpy(X_test.values).float()
y_test = torch.from_numpy(y_test.values).long().squeeze()
# 定义超参数空间
dim = 4
lb = [16, 0.1, 64, 0.0001]
ub = [256, 0.5, 256, 0.1]
pso_bound = np.array([lb, ub])
# 定义FA_CPSO优化算法
class FA_CPSO(PSO):
def __init__(self, func, lb, ub, dimension, size_pop=50, max_iter=300, w=0.8, c1=2, c2=2, c3=2, p=0.5):
super().__init__(func, lb, ub, dimension, size_pop, max_iter, w, c1, c2, p)
self.c3 = c3 # FA_CPSO新增参数
self.S = np.zeros((self.size_pop, self.dimension)) # 储存每个个体的历代最优位置
self.F = np.zeros(self.size_pop) # 储存每个个体的当前适应度值
self.Fbest = np.zeros(self.max_iter + 1) # 储存每次迭代的最优适应度值
self.Fbest[0] = self.gbest_y
self.S = self.X.copy()
def evolve(self):
self.F = self.cal_fitness(self.X)
self.Fbest[self.gbest_iter] = self.gbest_y
for i in range(self.size_pop):
if uniform.rvs() < self.p:
# 个体位置更新
self.X[i] = self.S[i] + self.c3 * (self.gbest - self.X[i]) + self.c1 * \
(self.pbest[i] - self.X[i]) + self.c2 * (self.pbest[np.random.choice(self.neighbor[i])] - self.X[i])
else:
# 个体位置更新
self.X[i] = self.S[i] + self.c1 * (self.pbest[i] - self.X[i]) + self.c2 * (self.pbest[np.random.choice(self.neighbor[i])] - self.X[i])
# 边界处理
self.X[i] = np.clip(self.X[i], self.lb, self.ub)
# 适应度值更新
self.F[i] = self.func(self.X[i])
# 个体历代最优位置更新
if self.F[i] < self.func(self.S[i]):
self.S[i] = self.X[i]
# 全局最优位置更新
self.gbest = self.S[self.F.argmin()]
self.gbest_y = self.F.min()
# 定义优化目标函数
def objective_function(para):
hidden_size, dropout, batch_size, learning_rate = para
model = LSTMAttention(10, hidden_size, 2, 2, dropout).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
train_dataset = torch.utils.data.TensorDataset(X_train, y_train)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
for epoch in range(100):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
test_dataset = torch.utils.data.TensorDataset(X_test, y_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=len(test_dataset))
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
pred = torch.argmax(outputs, dim=1)
test_loss = criterion(outputs, labels)
rmse = torch.sqrt(torch.mean((pred - labels) ** 2))
return test_loss.item() + rmse.item()
# 运行FA_CPSO算法进行超参数优化
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
fa_cpso = FA_CPSO(objective_function, lb, ub, dim, size_pop=50, max_iter=100)
fa_cpso.run()
# 输出最优超参数
best_hidden_size, best_dropout, best_batch_size, best_learning_rate = fa_cpso.gbest
# 使用最优超参数训练模型
model = LSTMAttention(10, best_hidden_size, 2, 2, best_dropout).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=best_learning_rate)
train_dataset = torch.utils.data.TensorDataset(X_train, y_train)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=best_batch_size, shuffle=True)
for epoch in range(100):
for i, (inputs, labels) in enumerate(train_loader):
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
# 在测试集上进行预测
test_dataset = torch.utils.data.TensorDataset(X_test, y_test)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=len(test_dataset))
for inputs, labels in test_loader:
inputs = inputs.to(device)
labels = labels.to(device)
outputs = model(inputs)
pred = torch.argmax(outputs, dim=1)
test_loss = criterion(outputs, labels)
test_rmse = torch.sqrt(torch.mean((pred - labels) ** 2))
# 输出测试损失和测试集的均方根误差
print('Test loss: {:.4f}, Test RMSE: {:.4f}'.format(test_loss.item(), test_rmse.item()))
# 绘制测试集的预测值和实际值
import matplotlib.pyplot as plt
plt.plot(pred.cpu().numpy(), label='Predict')
plt.plot(labels.cpu().numpy(), label='Actual')
plt.legend()
plt.show()
# 在预测集上进行预测
X_pred = torch.from_numpy(pd.read_csv('X_pred.csv').values).float().to(device)
outputs = model(X_pred)
pred = torch.argmax(outputs, dim=1)
# 计算预测值到达警戒线的时间和实际值到达警戒线的时间
threshold = y_train.max() * 0.85
pred_time = np.argmax(pred.cpu().numpy() >= threshold)
actual_time = np.argmax(y_test.cpu().numpy() >= threshold)
# 绘制预测集的实际值到达的时间和预测值到达的时间
plt.axvline(x=pred_time, color='r', linestyle='--')
plt.axvline(x=actual_time, color='g', linestyle='--')
plt.plot(pred.cpu().numpy(), label='Predict')
plt.plot(y_test.cpu().numpy(), label='Actual')
plt.legend()
plt.show()
```
请注意,这只是一个代码示例,可能需要根据数据集的特点进行调整和修改。
使用Python实现神经网络回归的详细代码 基本要求: ●使用sklearn 的 MLP 实现神经网络 ●数据要求: ●回归问题: ●选取任意标准数据集测试 提高练习: ●尝试使用pytorch实现梯度下降(先手动update,再使用torch.optim模块)
在Python中,我们可以使用scikit-learn库中的MultiLayerPerceptron (MLP)类来实现一个简单的神经网络回归模型。这里是一个基础的例子,我们将使用鸢尾花数据集作为示例:
```python
# 导入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.neural_network import MLPRegressor
import numpy as np
# 加载鸢尾花数据集
iris = load_iris()
X = iris.data[:, :2] # 取前两个特征用于回归,假设我们只关心花瓣长度和宽度
y = iris.target
# 数据预处理
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
# 定义并初始化神经网络模型
nn_model = MLPRegressor(hidden_layer_sizes=(10, 10), activation='relu', solver='adam', alpha=0.0001)
# 训练模型
nn_model.fit(X_train, y_train)
# 预测
y_pred = nn_model.predict(X_test)
# 打印预测结果
print("Predicted values for some samples:")
print(y_pred[:5])
# 提高练习部分 - 手动梯度下降 (仅适用于小规模问题)
def sgd_update(parameters, gradients, learning_rate):
parameters -= learning_rate * gradients
# 创建手动梯度下降的优化函数
learning_rate = 0.01
epochs = 100
for epoch in range(epochs):
# 获取当前层的权重和偏置
weights, biases = nn_model.coefs_, nn_model.intercepts_
# 手动计算梯度
# ...此处需要实现神经网络的导数公式... (省略)
# 更新权重和偏置
for weight, bias, grad in zip(weights, biases, gradients):
sgd_update(weight, grad, learning_rate)
sgd_update(bias, grad, learning_rate)
# 对于大规模问题,更推荐使用PyTorch的torch.optim模块进行自动优化
# 示例:
import torch
import torch.nn as nn
import torch.optim as optim
# ...将上面的sklearn模型转换为PyTorch模型...
optimizer = optim.SGD(model.parameters(), lr=0.01)
for epoch in range(epochs):
optimizer.zero_grad() # 梯度清零
# 计算损失并反向传播
loss = model.loss_function(output, target)
loss.backward()
optimizer.step()
```
在这个例子中,我们首先加载数据、划分训练集和测试集,然后创建一个MLPRegressor实例,并训练它。提高练习部分演示了如何手动更新神经网络的权重,但在实际应用中,PyTorch等深度学习框架提供了更方便的优化工具。
阅读全文