用下降搜索法GOLDSTEIN和牛顿方向确定多元向量关于级数i是1到n的xi[yi- e^bx/(1+e^bx)],其中B是多元向量极大似然代码Python代码
时间: 2023-12-03 11:42:05 浏览: 105
以下是使用下降搜索法GOLDSTEIN和牛顿方向确定多元向量关于级数i是1到n的xi[yi- e^bx/(1+e^bx)]的Python代码:
```python
import numpy as np
def logistic(x, b):
return 1 / (1 + np.exp(-np.dot(x, b)))
def likelihood_grad(x, y, b):
p = logistic(x, b)
return np.dot(x.T, y - p)
def likelihood_hessian(x, b):
p = logistic(x, b)
w = p * (1 - p)
return np.dot(x.T * w, x)
def goldstein_search(x, y, b, grad, direction):
alpha = 1
c = 1e-4
rho = 0.9
while True:
new_b = b + alpha * direction
f_new = np.sum(np.log(1 + np.exp(np.dot(x, new_b)))) - np.dot(y, np.dot(x, new_b))
f = np.sum(np.log(1 + np.exp(np.dot(x, b)))) - np.dot(y, np.dot(x, b))
if f_new <= f + c * alpha * np.dot(grad, direction):
return alpha
else:
alpha *= rho
def newton_direction(x, y, b):
grad = likelihood_grad(x, y, b)
hessian = likelihood_hessian(x, b)
return np.linalg.solve(hessian, grad)
def gradient_descent(x, y, b_init, max_iter=1000, tol=1e-6):
b = b_init
for i in range(max_iter):
grad = likelihood_grad(x, y, b)
if np.linalg.norm(grad) < tol:
break
direction = newton_direction(x, y, b)
alpha = goldstein_search(x, y, b, grad, direction)
b += alpha * direction
return b
# Example usage:
x = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
y = np.array([1, 0, 1])
b_init = np.zeros(3)
b = gradient_descent(x, y, b_init)
print(b)
```
这段代码实现了使用下降搜索法GOLDSTEIN和牛顿方向来确定多元向量关于级数i是1到n的xi[yi- e^bx/(1+e^bx)]的最大似然估计。其中,logistic函数是sigmoid函数,用于计算模型输出的概率;likelihood_grad函数和likelihood_hessian函数分别计算对数似然函数的梯度和海森矩阵;goldstein_search函数使用GOLDSTEIN搜索法来寻找合适的步长;newton_direction函数使用牛顿法来计算搜索方向;gradient_descent函数使用梯度下降法来最小化对数似然函数,返回最大似然估计的系数向量。
阅读全文