请编写pytorch实现中文的实体命名
时间: 2023-08-01 19:09:10 浏览: 103
以下是一个简单的基于PyTorch的中文实体命名识别模型实现:
首先,需要对中文文本进行分词,可以使用jieba分词库进行分词:
```python
import jieba
def segment(text):
return list(jieba.cut(text))
```
接下来,需要将文本中的实体标记出来,可以使用BIO(Beginning, Inside, Outside)标记法。例如,对于句子“张三在北京工作”,可以标记为:
```python
['张', '三', '在', '北', '京', '工', '作']
['B-PER', 'I-PER', 'O', 'B-LOC', 'I-LOC', 'O', 'O']
```
其中,B-PER表示人名的起始位置,I-PER表示人名的中间位置,B-LOC表示地名的起始位置,I-LOC表示地名的中间位置,O表示非实体。
标记实体的过程可以使用正则表达式来实现:
```python
import re
def label_entity(text, entities):
labels = ['O'] * len(text)
for entity in entities:
pattern = re.compile(entity)
match = pattern.search(text)
if match:
start = match.start()
end = match.end()
labels[start] = 'B-' + entity_type
for i in range(start+1, end):
labels[i] = 'I-' + entity_type
return labels
```
最后,可以使用PyTorch来训练一个实体命名识别模型,例如使用BiLSTM-CRF模型:
```python
import torch
import torch.nn as nn
import torch.optim as optim
class BiLSTM_CRF(nn.Module):
def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
super(BiLSTM_CRF, self).__init__()
self.embedding_dim = embedding_dim
self.hidden_dim = hidden_dim
self.vocab_size = vocab_size
self.tag_to_ix = tag_to_ix
self.tagset_size = len(tag_to_ix)
self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, num_layers=1, bidirectional=True)
self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)
self.transitions = nn.Parameter(torch.randn(self.tagset_size, self.tagset_size))
self.transitions.data[tag_to_ix['O'], :] = -10000
self.transitions.data[:, tag_to_ix['O']] = -10000
self.transitions.data[tag_to_ix['O'], tag_to_ix['O']] = 0
self.transitions.data[tag_to_ix['B-PER'], tag_to_ix['I-PER']] = -10000
self.transitions.data[tag_to_ix['I-PER'], tag_to_ix['B-PER']] = -10000
self.transitions.data[tag_to_ix['B-LOC'], tag_to_ix['I-LOC']] = -10000
self.transitions.data[tag_to_ix['I-LOC'], tag_to_ix['B-LOC']] = -10000
self.hidden = self.init_hidden()
def init_hidden(self):
return (torch.randn(2, 1, self.hidden_dim // 2), torch.randn(2, 1, self.hidden_dim // 2))
def _forward_alg(self, feats):
init_alphas = torch.full((1, self.tagset_size), -10000.)
init_alphas[0][self.tag_to_ix['O']] = 0.
forward_var = init_alphas
for feat in feats:
alphas_t = []
for next_tag in range(self.tagset_size):
emit_score = feat[next_tag].view(1, -1).expand(1, self.tagset_size)
trans_score = self.transitions[next_tag].view(1, -1)
next_tag_var = forward_var + trans_score + emit_score
alphas_t.append(torch.logsumexp(next_tag_var, dim=1).view(1))
forward_var = torch.cat(alphas_t).view(1, -1)
terminal_var = forward_var + self.transitions[self.tag_to_ix['O']]
alpha = torch.logsumexp(terminal_var, dim=1)
return alpha
def _get_lstm_features(self, sentence):
self.hidden = self.init_hidden()
embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
lstm_out, self.hidden = self.lstm(embeds, self.hidden)
lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
lstm_feats = self.hidden2tag(lstm_out)
return lstm_feats
def _score_sentence(self, feats, tags):
score = torch.zeros(1)
tags = torch.cat([torch.tensor([self.tag_to_ix['O']], dtype=torch.long), tags])
for i, feat in enumerate(feats):
score = score + self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
score = score + self.transitions[self.tag_to_ix['O'], tags[-1]]
return score
def _viterbi_decode(self, feats):
backpointers = []
init_vvars = torch.full((1, self.tagset_size), -10000.)
init_vvars[0][self.tag_to_ix['O']] = 0
forward_var = init_vvars
for feat in feats:
bptrs_t = []
viterbivars_t = []
for next_tag in range(self.tagset_size):
next_tag_var = forward_var + self.transitions[next_tag]
best_tag_id = argmax(next_tag_var)
bptrs_t.append(best_tag_id)
viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
backpointers.append(bptrs_t)
terminal_var = forward_var + self.transitions[self.tag_to_ix['O']]
best_tag_id = argmax(terminal_var)
path_score = terminal_var[0][best_tag_id]
best_path = [best_tag_id]
for bptrs_t in reversed(backpointers):
best_tag_id = bptrs_t[best_tag_id]
best_path.append(best_tag_id)
start = best_path.pop()
assert start == self.tag_to_ix['O']
best_path.reverse()
return path_score, best_path
def forward(self, sentence):
lstm_feats = self._get_lstm_features(sentence)
score, tag_seq = self._viterbi_decode(lstm_feats)
return score, tag_seq
```
在训练过程中,可以使用交叉熵损失函数和随机梯度下降优化器:
```python
def train(model, optimizer, train_data):
for sentence, tags in train_data:
model.zero_grad()
sentence_in = prepare_sequence(sentence, word_to_ix)
targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)
loss = model.neg_log_likelihood(sentence_in, targets)
loss.backward()
optimizer.step()
def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long)
```
阅读全文