用Java写一段卷积神经网络代码
时间: 2023-03-12 09:40:34 浏览: 114
卷积神经网络代码
4星 · 用户满意度95%
好的,下面是用 Java 实现卷积神经网络的代码示例:
```java
import java.util.Random;
public class ConvolutionalNeuralNetwork {
private final int inputWidth;
private final int inputHeight;
private final int inputDepth;
private final int[] convolutionalLayerSizes;
private final int[] fullyConnectedLayerSizes;
private final int outputSize;
private final double[][][][] convolutionalWeights;
private final double[][] fullyConnectedWeights;
private final double[] outputWeights;
private final double[][][][] convolutionalWeightGrads;
private final double[][] fullyConnectedWeightGrads;
private final double[] outputWeightGrads;
private final double[] outputErrors;
private final double[] fullyConnectedErrors;
private final double[][][] convolutionalErrors;
public ConvolutionalNeuralNetwork(int inputWidth, int inputHeight, int inputDepth, int[] convolutionalLayerSizes, int[] fullyConnectedLayerSizes, int outputSize) {
this.inputWidth = inputWidth;
this.inputHeight = inputHeight;
this.inputDepth = inputDepth;
this.convolutionalLayerSizes = convolutionalLayerSizes;
this.fullyConnectedLayerSizes = fullyConnectedLayerSizes;
this.outputSize = outputSize;
Random random = new Random();
convolutionalWeights = new double[convolutionalLayerSizes.length][][][];
for (int i = 0; i < convolutionalWeights.length; i++) {
convolutionalWeights[i] = new double[convolutionalLayerSizes[i]][][];
for (int j = 0; j < convolutionalWeights[i].length; j++) {
convolutionalWeights[i][j] = new double[inputDepth][];
for (int k = 0; k < convolutionalWeights[i][j].length; k++) {
convolutionalWeights[i][j][k] = new double[3];
for (int l = 0; l < convolutionalWeights[i][j][k].length; l++) {
convolutionalWeights[i][j][k][l] = random.nextGaussian();
}
}
}
}
fullyConnectedWeights = new double[fullyConnectedLayerSizes.length][];
for (int i = 0; i < fullyConnectedWeights.length; i++) {
fullyConnectedWeights[i] = new double[fullyConnectedLayerSizes[i]];
for (int j = 0; j < fullyConnectedWeights[i].length; j++) {
fullyConnectedWeights[i][j] = random.nextGaussian();
}
}
outputWeights = new double[outputSize];
for (int i = 0; i < outputWeights.length; i++) {
outputWeights[i] = random.nextGaussian
阅读全文