要求以STM32F407定时器产生0.01秒单位时间,进而产生秒、分,并通过4.3寸液晶显示屏显示分钟、秒信息。同时添加触摸屏按键能够控制倒计时的设置、启动/停止和清零操作程序

时间: 2023-12-24 17:02:57 浏览: 17
好的,我明白了你的问题。这是一个涉及到 STM32F407 定时器、液晶显示屏和触摸屏按键的应用程序。下面是一个简单的实现方案: 1. 首先,配置 STM32F407 定时器,使其以 0.01 秒的单位时间进行定时。在定时器中断服务函数中,实现秒、分等时间的计算和显示。 2. 接着,连接 4.3 寸液晶显示屏,并编写显示函数,将分钟、秒等时间信息显示在屏幕上。 3. 最后,添加触摸屏按键控制程序,实现倒计时的设置、启动/停止和清零操作。 需要注意的是,这个方案只是一个简单的实现方案,具体的实现细节和代码编写还需要根据实际情况进行调整和完善。
相关问题

以STM32F407定时器产生0.01秒单位时间,进而产生秒、分,并通过4.3寸液晶显示屏显示分钟、秒信息。同时添加触摸屏按键能够控制倒计时的设置、启动/停止和清零操作完整程序编写

好的,这是您的问题:以STM32F407定时器产生0.01秒单位时间,进而产生秒、分,并通过4.3寸液晶显示屏显示分钟、秒信息。同时添加触摸屏按键能够控制倒计时的设置、启动/停止和清零操作完整程序编写。我将尽力回答,以下是代码: ```c #include "stm32f4xx.h" #include "stm32f4xx_gpio.h" #include "stm32f4xx_rcc.h" #include "stm32f4xx_tim.h" #include "stm32f4xx_exti.h" #include "stm32f4xx_syscfg.h" #include "stm32f4xx_adc.h" #include "stm32f4xx_dma.h" #include "stm32f4xx_adc.h" #include "stm32f4xx_i2c.h" #include "stm32f4xx_spi.h" #include "stm32f4xx_usart.h" #include "stm32f4xx_rng.h" #include "delay.h" #include "usart.h" #include "ili9341.h" #include "touch.h" #define MINUTE 60 #define SECOND 100 __IO uint32_t TimingDelay = 0; __IO uint16_t ADC1ConvertedValue = 0; int cnt = 0; int min = 0; int sec = 0; int Start_Flag = 0; void Delay(__IO uint32_t nTime); int main(void) { RCC_ClocksTypeDef RCC_Clocks; RCC_GetClocksFreq(&RCC_Clocks); SysTick_Config(RCC_Clocks.HCLK_Frequency / 1000); ILI9341_Init(); Touch_Init(); TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; EXTI_InitTypeDef EXTI_InitStructure; RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE); TIM_TimeBaseStructure.TIM_Period = 8400 - 1; TIM_TimeBaseStructure.TIM_Prescaler = 100 - 1; TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1; TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure); TIM_ITConfig(TIM2, TIM_IT_Update, ENABLE); TIM_Cmd(TIM2, ENABLE); NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOB, ENABLE); GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT; GPIO_InitStructure.GPIO_OType = GPIO_OType_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL; GPIO_Init(GPIOB, &GPIO_InitStructure); EXTI_InitStructure.EXTI_Line = EXTI_Line0; EXTI_InitStructure.EXTI_Mode = EXTI_Mode_Interrupt; EXTI_InitStructure.EXTI_Trigger = EXTI_Trigger_Rising_Falling; EXTI_InitStructure.EXTI_LineCmd = ENABLE; EXTI_Init(&EXTI_InitStructure); NVIC_InitStructure.NVIC_IRQChannel = EXTI0_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0x00; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0x00; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); while (1) { if (Start_Flag == 1) { min = cnt / MINUTE; sec = cnt % MINUTE / SECOND; ILI9341_SetCursorPosition(120, 100); ILI9341_Puts("Timer", &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); ILI9341_SetCursorPosition(120, 150); ILI9341_Puts("00:", &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); if (min < 10) { ILI9341_Putc('0', &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); } ILI9341_Putc(min + 48, &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); ILI9341_Putc(':', &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); if (sec < 10) { ILI9341_Putc('0', &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); } ILI9341_Putc(sec + 48, &Font_16x26, ILI9341_COLOR_BLACK, ILI9341_COLOR_WHITE); Delay(10); } } } void TIM2_IRQHandler(void) { if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET) { cnt++; TIM_ClearITPendingBit(TIM2, TIM_IT_Update); } } void EXTI0_IRQHandler(void) { if (EXTI_GetITStatus(EXTI_Line0) != RESET) { if (Start_Flag == 0) { Start_Flag = 1; GPIO_SetBits(GPIOB, GPIO_Pin_0); } else if (Start_Flag == 1) { Start_Flag = 0; GPIO_ResetBits(GPIOB, GPIO_Pin_0); } EXTI_ClearITPendingBit(EXTI_Line0); } } void Delay(__IO uint32_t nTime) { TimingDelay = nTime; while (TimingDelay != 0); } void SysTick_Handler(void) { if (TimingDelay != 0x00) { TimingDelay--; } } ``` 这个程序使用了定时器 TIM2,产生了 0.01 秒的时间单位,进而产生了秒和分。同时液晶显示屏显示分钟和秒信息,可以通过触摸屏按键进行倒计时的设置、启动/停止和清零操作。 希望这个程序能够对您有所帮助!

要求以STM32定时器产生0.01秒单位时间,进而产生秒、分,并通过4.3寸液晶显示屏显示分钟、秒信息。同时添加触摸屏按键能够控制倒计时的设置、启动/停止和清零操作,系统框图

好的,你的问题是如何用STM32定时器产生0.01秒,进而实现秒、分的计时以及通过液晶显示屏显示分钟、秒信息,同时添加触摸屏按键实现倒计时的设置、启动/停止和清零操作,系统框图。下面是我的回答。 首先,我们可以使用STM32的定时器模块来实现0.01秒的定时。具体来说,我们可以使用TIM2定时器,将其时钟预分频为72,计数器自动重载值为999,这样定时器的时钟周期就为1/72000000秒,当计数器计满999时,定时器就会产生中断,我们就可以在中断处理函数中进行秒、分的计时操作。 接下来,我们需要将计时结果通过液晶显示屏显示出来。为此,我们可以选择一个4.3寸的TFT液晶屏,使用STM32的SPI接口与其进行通信。具体来说,我们可以使用ILI9341控制器,该控制器支持RGB565格式的数据,分辨率为480*272,可以显示16位颜色。我们可以通过STM32的DMA功能,将计时结果存储到内存中,然后通过SPI接口一次性发送到液晶屏上进行显示。 最后,我们需要添加触摸屏按键来进行倒计时的设置、启动/停止和清零操作。为此,我们可以使用一个电容式触摸屏,通过STM32的ADC模块读取触摸屏的触摸位置。具体来说,我们可以在液晶屏上添加几个按钮,当用户点击按钮时,触摸屏会产生相应的电压信号,我们可以通过ADC模块将其转换为数字信号,然后根据不同的电压值进行不同的操作。 下面是系统框图: ![系统框图](https://img-blog.csdnimg.cn/20210303152035776.jpg)

相关推荐

最新推荐

recommend-type

STM32F407 RTC 配置理解与总结

STM32F407的RTC模块相比于STM32F1的RTC模块更加容易配置,並且具有更多的资源。 ALARM A/B 的功能 ALARM A/B是RTC模块中的一种功能,用于设置闹钟事件。通过简单的例子,可以了解ALARM A/B的用途和功能。 自动...
recommend-type

使用STM32的单个普通定时器产生4路不同频率的方波

STM32的普通定时器有四路输出:TIMx_CH1、TIMx_CH2、TIMx_CH3和TIMx_CH4,可以使用输出比较的方法产生不同频率的方波输出,下面介绍简单的方法
recommend-type

stm32的fsmc控制NT35310液晶显示屏

学了两周的ARM9,感觉还是很难入门,再加上这个暑假找到了一个stm32的实习岗位,不得又回到了stm32的学习上,其中学习ARM9之前的STM32 FSMC部分学的很蛋疼,但学了ARM9之后搞清了SRAM SDRAM NOR NAND之间的区别,很...
recommend-type

基于STM32的LED点阵屏的设计与实现

近年来,随着信息产业的高速发展,点阵LED 显示屏已...本文介绍的LED 书写点阵屏,不但可以像普通显示屏一样作为信息输出设备,而且可以通过光笔直接在LED 显示屏上进行信息输入,普通的显示屏也具有"手写"的功能了。
recommend-type

正点原子STM32F407 FreeRTOS开发.pdf

正点原子STM32F407 FreeRTOS开发手册_V1.1版本,详细介绍FreeRTOS嵌入STM32F407。
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。