C++调用opencv用SURF算法实现对两张图像的匹配
时间: 2023-11-13 09:03:00 浏览: 136
你可以使用以下步骤来使用SURF算法在C++中进行图像匹配:
1. 首先,确保你已经安装了OpenCV库,并且你的项目已经配置了正确的包含路径和链接库。
2. 导入必要的头文件:
```cpp
#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp>
```
3. 加载两张待匹配的图像:
```cpp
cv::Mat image1 = cv::imread("image1.jpg", cv::IMREAD_GRAYSCALE);
cv::Mat image2 = cv::imread("image2.jpg", cv::IMREAD_GRAYSCALE);
```
4. 创建SURF特征检测器和描述子提取器:
```cpp
cv::Ptr<cv::xfeatures2d::SURF> surf = cv::xfeatures2d::SURF::create();
```
5. 检测和提取图像的SURF特征:
```cpp
std::vector<cv::KeyPoint> keypoints1, keypoints2;
cv::Mat descriptors1, descriptors2;
surf->detectAndCompute(image1, cv::noArray(), keypoints1, descriptors1);
surf->detectAndCompute(image2, cv::noArray(), keypoints2, descriptors2);
```
6. 匹配特征点:
```cpp
cv::BFMatcher matcher;
std::vector<cv::DMatch> matches;
matcher.match(descriptors1, descriptors2, matches);
```
7. 对匹配结果进行筛选,只保留最佳的匹配:
```cpp
double max_dist = 0, min_dist = 100;
for (int i = 0; i < descriptors1.rows; i++) {
double dist = matches[i].distance;
if (dist < min_dist) min_dist = dist;
if (dist > max_dist) max_dist = dist;
}
std::vector<cv::DMatch> good_matches;
for (int i = 0; i < descriptors1.rows; i++) {
if (matches[i].distance <= std::max(2 * min_dist, 0.02)) {
good_matches.push_back(matches[i]);
}
}
```
8. 绘制匹配结果:
```cpp
cv::Mat img_matches;
cv::drawMatches(image1, keypoints1, image2, keypoints2, good_matches, img_matches);
cv::imshow("Matches", img_matches);
cv::waitKey(0);
```
这样,你就可以使用SURF算法实现对两张图像的匹配了。记得将"image1.jpg"和"image2.jpg"替换为你自己的图像路径。
阅读全文