keil中spwm代码生成
时间: 2023-12-04 22:36:38 浏览: 159
在Keil中生成SPWM代码,你可以使用STM32CubeMX和Keil MDK来完成。下面是一个基本的步骤:
1. 安装STM32CubeMX和Keil MDK软件。
2. 打开STM32CubeMX,创建一个新的工程。选择你的目标芯片型号,并配置相应的时钟、GPIO和PWM设置。
3. 在"Pinout & Configuration"选项卡中,选择相应的引脚用于输出PWM信号。
4. 在"Configuration"选项卡中,找到"TIMx PWM Generation"(x表示定时器编号)配置项,选择SPWM方式。
5. 根据需要设置SPWM的频率、幅值和相位等参数。
6. 点击"Project"菜单,选择"Generate Code"生成代码。选择Keil MDK作为IDE。
7. 打开生成的Keil工程文件(.uvprojx),可以在Keil MDK中进行编译和下载。
注意:具体的操作步骤可能会因不同的STM32CubeMX和Keil MDK版本而有所不同。请根据你使用的软件版本进行相应的操作。此外,SPWM代码的生成还依赖于你所选择的具体芯片型号和对应的外设配置。
相关问题
Keil编写代码实现全彩色呼吸灯和SPWM输出
好的,下面我将给出一个基于Keil编写代码实现全彩色呼吸灯和SPWM输出的示例代码。
代码主要分为以下几个部分:
1. 头文件包含和全局变量定义
```c
#include "stm32f10x.h"
#define LED_R_Pin GPIO_Pin_8
#define LED_R_Port GPIOB
#define LED_G_Pin GPIO_Pin_9
#define LED_G_Port GPIOB
#define LED_B_Pin GPIO_Pin_7
#define LED_B_Port GPIOB
#define POT_Pin GPIO_Pin_0
#define POT_Channel ADC_Channel_0
#define POT_Port GPIOA
uint16_t potValue = 0;
uint16_t sinTable[100] = {500, 524, 548, 572, 595, 619, 642, 665, 687, 709, 730, 750, 770, 789, 808, 826, 843, 859, 875, 890, 904, 917, 929, 940, 950, 959, 967, 974, 980, 985, 989, 992, 994, 995, 994, 992, 989, 985, 980, 974, 967, 959, 950, 940, 929, 917, 904, 890, 875, 859, 843, 826, 808, 789, 770, 750, 730, 709, 687, 665, 642, 619, 595, 572, 548, 524, 500, 476, 452, 428, 405, 381, 358, 335, 313, 291, 270, 250, 230, 211, 192, 174, 157, 141, 125, 110, 96, 83, 71, 60, 50, 41, 33, 26, 20, 15, 11, 8, 6, 5, 6, 8, 11, 15, 20, 26, 33, 41, 50, 60, 71, 83, 96, 110, 125, 141, 157, 174, 192, 211, 230, 250, 270, 291, 313, 335, 358, 381, 405, 428, 452, 476};
```
这里定义了LED和电位器的引脚、端口等信息以及正弦波表和全局变量。
2. GPIO口、ADC和定时器的初始化
```c
void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB | RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = LED_R_Pin | LED_G_Pin | LED_B_Pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(LED_R_Port, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = POT_Pin;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(POT_Port, &GPIO_InitStructure);
}
void ADC_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1, ENABLE);
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = DISABLE;
ADC_InitStructure.ADC_ContinuousConvMode = DISABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 1;
ADC_Init(ADC1, &ADC_InitStructure);
ADC_RegularChannelConfig(ADC1, POT_Channel, 1, ADC_SampleTime_55Cycles5);
ADC_Cmd(ADC1, ENABLE);
}
void TIM_Configuration(void)
{
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
TIM_TimeBaseStructure.TIM_Period = 999;
TIM_TimeBaseStructure.TIM_Prescaler = 71;
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM3, &TIM_TimeBaseStructure);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC1Init(TIM3, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC2Init(TIM3, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_Pulse = 0;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OC3Init(TIM3, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM3, TIM_OCPreload_Enable);
TIM_Cmd(TIM3, ENABLE);
}
```
这里包括GPIO口、ADC和定时器的初始化。其中GPIO口需要配置为PWM输出模式和模拟输入模式,定时器需要设置为PWM模式。
3. 主函数代码
```c
int main(void)
{
GPIO_Configuration();
ADC_Configuration();
TIM_Configuration();
while (1)
{
potValue = ADC_GetConversionValue(ADC1);
TIM_SetCompare1(TIM3, potValue);
TIM_SetCompare2(TIM3, potValue);
TIM_SetCompare3(TIM3, potValue);
for (int i = 0; i < 100; i++)
{
TIM_SetCompare1(TIM3, sinTable[i] * potValue / 1000);
TIM_SetCompare2(TIM3, sinTable[(i + 33) % 100] * potValue / 1000);
TIM_SetCompare3(TIM3, sinTable[(i + 66) % 100] * potValue / 1000);
for (int j = 0; j < 10000; j++)
;
}
}
}
```
在主函数中,我们首先进行GPIO口、ADC和定时器的初始化。然后在一个while循环中,读取电位器的值,并设置PWM波形的占空比。使用一个for循环和正弦波表来生成SPWM波形,并改变PWM波形的占空比,实现SPWM输出。
希望这个示例代码能够帮助你实现全彩色呼吸灯和SPWM输出。如果你有任何问题,欢迎随时询问。
基于Keil编写代码在STM32F103VET6上实现全彩色呼吸灯与SPWM输出
好的,我会尽力回答你的问题。
首先,全彩色呼吸灯和SPWM输出都需要使用STM32F103VET6的PWM输出功能。因此,我们需要配置定时器和通道来生成PWM波形。同时,我们还需要使用ADC来读取外部电位器的模拟值,以便调整PWM的占空比。
以下是基于Keil编写代码,在STM32F103VET6上实现全彩色呼吸灯与SPWM输出的步骤:
1. 配置GPIO口为PWM输出模式
使用GPIO_Init()函数初始化GPIO口为推挽输出模式,并设置为PWM输出模式。
2. 配置定时器和通道
使用TIM_TimeBaseInit()函数初始化定时器,并使用TIM_OCInit()函数初始化通道,设置占空比和极性。
3. 配置ADC
使用ADC_Init()函数初始化ADC,并使用ADC_RegularChannelConfig()函数配置ADC通道和采样时间。
4. 实现呼吸灯效果
使用定时器中断来改变PWM占空比,实现呼吸灯效果。
5. 实现SPWM输出
使用正弦波表来生成SPWM波形,使用定时器中断来改变PWM占空比,实现SPWM输出。
以上是基本的实现步骤,具体的代码实现需要根据具体的硬件连接和功能需求进行调整。
希望这些信息对你有所帮助,如有疑问请随时询问。
阅读全文