解释如下代码:如果(check_col_N*check_row_N>=25): match_all.append((pic_id1,row_cent1,col_cent1、pic_id2、row_cent2、col_cent2)) search_list.remove(pic_id2)

时间: 2023-08-11 12:08:45 浏览: 102
这段代码是一个条件语句,如果条件`check_col_N*check_row_N>=25`成立,那么就会执行`match_all.append((pic_id1, row_cent1, col_cent1, pic_id2, row_cent2, col_cent2))`和`search_list.remove(pic_id2)`两个操作。 其中, - `check_col_N`和`check_row_N`是两个变量,分别表示图像匹配时的列偏移和行偏移,它们的乘积表示两张图片在列方向和行方向上的匹配度。 - `match_all`是一个列表,用来保存匹配成功的图像对信息。这里的`append()`方法会将一个元组`(pic_id1, row_cent1, col_cent1, pic_id2, row_cent2, col_cent2)`添加到`match_all`列表中。这个元组包含了两个图像的ID和它们的中心点坐标。 - `search_list`是一个列表,用来保存待匹配的图像ID。这里的`remove()`方法会删除列表中指定的元素`pic_id2`,表示已经找到了与`pic_id1`匹配的图像,不再需要对它进行匹配操作了。
相关问题

解释如下代码:如果((len(np.unique(img_corner)))>2)&(np.sum(img_corner==1)<0.8*(N_pad*2+1)**2): 对于search_list中的pic_id2: data_mat2=读取数据(input_file,pic_id2,T_id,H_id) match_result=基于cv2_based(data_mat2,img_corner) 如果len(match_result[0])==1: row_cent2=match_result[0][0]+N_pad col_cent2=match_result[1][0]+N_pad N_LEF=最小值(第1行,第2行) N_TOP=最小值(col_cent1,col_cent2) N_RIG=最小值(L_img-1-行_cent1,L_img-1-row_cent2) N_BOT=最小(L_img-1-col_cent1,L_img-1-col_cent2) IMG_CHECK1=data_mat1[(row_centr1-N_LEF):(row_cent1+N_RIG+1),(col_cent1-N_TOP):(col_centr1+N_BOT+1)] IMG_CHECK2=data_mat2[(row_centr2-N_LEF):(row_cent2+N_RIG+1),(col_cent2-N_TOP):(col_centr2+N_BOT+1)] 如果np.array_equal(IMG_CHECK1,IMG_CHECK2): check_row_N=IMG_CHECK1.shape[0] check_col_N=IMG_CHECK1.shape[1] 如果(check_col_N*check_row_N>=25): match_all.append((pic_id1,row_cent1,col_cent1、pic_id2、row_cent2、col_cent2)) search_list.remove(pic_id2) 其他: FAIL_CORNER=FAIL_CORNER+1

这段代码是一个条件语句,如果条件`((len(np.unique(img_corner)))>2)&(np.sum(img_corner==1)<0.8*(N_pad*2+1)**2)`成立,那么就会执行对`search_list`中每个`pic_id2`的操作。 其中, - `img_corner`是一个二维数组,表示图像的角点。`np.unique(img_corner)`返回数组中不同的元素值,如果有两个以上不同值,则`len(np.unique(img_corner)) > 2`成立。 - `np.sum(img_corner==1)`表示在`img_corner`数组中等于1的元素数量,如果这个数量小于`(0.8*(N_pad*2+1)**2)`,则`np.sum(img_corner==1) < 0.8*(N_pad*2+1)**2`成立。 - `data_mat2 = 读取数据(input_file, pic_id2, T_id, H_id)`是读取数据的操作,它会返回一个二维数组`data_mat2`,表示图像数据。 - `match_result = 基于cv2_based(data_mat2, img_corner)`是基于`cv2_based`算法的图像匹配操作,它会返回匹配结果的行列坐标。 - 如果`len(match_result[0]) == 1`成立,表示找到了一个匹配点,那么就会执行以下操作: - `row_cent2 = match_result[0][0] + N_pad`和`col_cent2 = match_result[1][0] + N_pad`是计算匹配点的坐标。 - `N_LEF = min(第1行, 第2行)`、`N_TOP = min(col_cent1, col_cent2)`、`N_RIG = min(L_img-1-行_cent1, L_img-1-row_cent2)`和`N_BOT = min(L_img-1-col_cent1, L_img-1-col_cent2)`是计算匹配点与图像边缘的距离。 - `IMG_CHECK1 = data_mat1[(row_centr1-N_LEF):(row_cent1+N_RIG+1), (col_cent1-N_TOP):(col_centr1+N_BOT+1)]`和`IMG_CHECK2 = data_mat2[(row_centr2-N_LEF):(row_cent2+N_RIG+1), (col_cent2-N_TOP):(col_centr2+N_BOT+1)]`是用来检查匹配点周围像素的区域。 - 如果`np.array_equal(IMG_CHECK1, IMG_CHECK2)`成立,说明两个图像匹配成功,那么就会执行以下操作: - `check_row_N = IMG_CHECK1.shape[0]`和`check_col_N = IMG_CHECK1.shape[1]`是计算匹配区域的行数和列数。 - 如果`check_col_N*check_row_N >= 25`成立,说明匹配区域的面积大于等于25个像素,那么就会将匹配成功的图像对信息添加到`match_all`列表中,并从`search_list`中删除`pic_id2`元素。 - 否则,就会执行`FAIL_CORNER = FAIL_CORNER + 1`,表示匹配失败的角点数量加1。

解释如下代码: for pic_id1 in range(1,N_pic+1): print('matching ' + set_name +': ' +str(pic_id1).zfill(5)) N_CHANGE = 0 for T_id in range(1,16,3): for H_id in range(2,5): FAIL_CORNER = 0 data_mat1 = read_data(input_file,pic_id1,T_id,H_id) search_list = range( max((pic_id1-10),1),pic_id1)+ range(pic_id1+1, min((pic_id1 + 16),N_pic + 1 ) ) for cor_ind in range(0,N_cor): row_cent1 = cor_row_center[cor_ind] col_cent1 = cor_col_center[cor_ind] img_corner = data_mat1[(row_cent1-N_pad): (row_cent1+N_pad+1), (col_cent1-N_pad): (col_cent1+N_pad+1) ] if ((len(np.unique(img_corner))) >2)&(np.sum(img_corner ==1)< 0.8*(N_pad2+1)**2) : for pic_id2 in search_list: data_mat2 = read_data(input_file,pic_id2,T_id,H_id) match_result = cv2_based(data_mat2,img_corner) if len(match_result[0]) ==1: row_cent2 = match_result[0][0]+ N_pad col_cent2 = match_result[1][0]+ N_pad N_LEF = min( row_cent1 , row_cent2) N_TOP = min( col_cent1, col_cent2 ) N_RIG = min( L_img-1-row_cent1 , L_img-1-row_cent2) N_BOT = min( L_img-1-col_cent1 , L_img-1-col_cent2) IMG_CHECK1 = data_mat1[(row_cent1-N_LEF): (row_cent1+N_RIG+1), (col_cent1-N_TOP): (col_cent1+N_BOT+1) ] IMG_CHECK2 = data_mat2[(row_cent2-N_LEF): (row_cent2+N_RIG+1), (col_cent2-N_TOP): (col_cent2+N_BOT+1) ] if np.array_equal(IMG_CHECK1,IMG_CHECK2) : check_row_N = IMG_CHECK1.shape[0] check_col_N = IMG_CHECK1.shape[1] if (check_col_Ncheck_row_N>=25): match_all.append( (pic_id1, row_cent1, col_cent1, pic_id2 , row_cent2, col_cent2) ) search_list.remove(pic_id2) else: FAIL_CORNER = FAIL_CORNER +1 N_CHANGE = N_CHANGE + 1 #%% break if less than 1 useless corners, or have detected more than 10 images from 60 if(FAIL_CORNER <= 1): break match_all_pd = pd.DataFrame(match_all,columns = ['pic_id1','row_id1','col_id1','pic_id2','row_id2','col_id2']) pd_add = pd.DataFrame(np.arange(1,N_pic+1), columns = ['pic_id1']) pd_add['pic_id2'] = pd_add['pic_id1'] pd_add['row_id1'] = 0 pd_add['row_id2'] = 0 pd_add['col_id1'] = 0 pd_add['col_id2'] = 0 match_all_pd = pd.concat([match_all_pd,pd_add]) match_all_pd.index = np.arange(len(match_all_pd))

这段代码是一个图像匹配的算法,其主要功能是在一个图像序列中找到相互匹配的图像对。以下是代码的主要流程: 1. 对于每张图像,用read_data()函数读取图像数据,并依次对每个角点进行匹配。 2. 对于每个角点,提取其周围的图像块,并检查图像块的像素值是否合适。 3. 在当前图像的前10张和后15张图像中搜索匹配图像,并用cv2_based()函数进行匹配。 4. 如果找到匹配图像,则计算两个图像块之间的偏移量,并用该偏移量对匹配图像进行校准。 5. 如果两个图像块相似,则将它们标记为匹配,并将匹配结果添加到match_all列表中。 6. 最后,将匹配结果存储在一个名为match_all_pd的pandas数据框中,并返回该数据框。 整个算法的核心是cv2_based()函数,它使用OpenCV中的模板匹配算法来计算两个图像块之间的偏移量。此外,该算法还使用了pandas数据框来保存匹配结果,以方便后续的分析和可视化。
阅读全文

相关推荐

最新推荐

recommend-type

如何基于python对接钉钉并获取access_token

本教程将详细解释如何实现这一过程。 首先,你需要在钉钉开放平台(https://open.dingtalk.com)上注册一个应用。在注册完成后,你会获得两个关键参数:`appkey`和`appsecret`。这两个参数是应用的身份标识,用于...
recommend-type

基于Matlab极化天线和目标之间的信号传输建模 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

移动通信网络中集中式无线电接入网的数据处理需求与性能指标分析

内容概要:本文提出了一种新的分析框架,用于评估集中式无线电接入网(RAN)的数据处理需求。作者定义了若干性能指标,如计算失效概率、复杂度、增益、多样性和复杂度率之间的权衡。该模型基于块瑞利衰落、距离相关路径损耗和部分功率控制假设下进行仿真验证,证明了集中计算资源的优势。 适用人群:通信工程领域的研究人员、5G技术开发人员和无线网络优化专家。 使用场景及目标:①理解集中式RAN架构对网络性能的影响;②评估集中化数据处理资源在提高吞吐量方面的效益;③量化集中式RAN系统的数据处理复杂度和可靠性。 其他说明:文章通过对多种场景和参数设置的仿真研究,展示了集中式RAN系统相对于传统分布式系统的优越性,为未来移动网络的设计提供了理论支持和技术依据。
recommend-type

444.exe44444

444.exe44444
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依