c++读取txt文本数据放入vector

时间: 2023-10-12 10:17:51 浏览: 329
可以用以下代码将文本数据读取到vector中: ```c++ #include <iostream> #include <fstream> #include <vector> #include <string> int main() { std::vector<std::string> lines; std::ifstream infile("data.txt"); std::string line; while (std::getline(infile, line)) { lines.push_back(line); } infile.close(); // 打印 vector 中的数据 for (const auto& l : lines) { std::cout << l << std::endl; } return 0; } ``` 其中,`data.txt`是要读取的文本文件名,`lines`是存储读取数据的vector。`std::getline()`函数可以从文件流中读取一行数据,并将其存入字符串变量`line`中。`push_back()`函数将该字符串添加到vector中。最后,遍历vector并输出其中的所有字符串。
相关问题

c++词法分析程序,使用容器,读取txt文本内单词并识别出来,打印各类别码,单词类型

C++中的词法分析程序通常涉及到自然语言处理的第一步,它将输入的文本分解成有意义的单元,如标识符、关键字、运算符等。为了实现这个功能,并使用容器管理这些词元,我们可以使用标准库中的`std::vector`或`std::unordered_map`作为数据结构。 以下是一个简单的步骤概述: 1. **打开文件**:使用`fstream`库打开指定的TXT文本文件。 2. **逐行读取**:遍历文件内容,对每一行进行分词。 3. **词元识别**: - 使用`istringstream`或正则表达式库(例如`<regex>`)分割单词。 - 对每个单词检查其类别: - 利用内置词汇表或预定义的枚举类型,标记为标识符(ID)、关键字(KEY)、数字(NUM)、标点符号(PUNCT)等。 4. **存储与分类**: - 将单词与其类别放入对应的容器中,比如`std::map<std::string, int>`,键是单词,值代表类别码。 - 或者使用`std::vector<std::pair<std::string, int>>`,每个元素包含单词和类别。 5. **打印结果**:遍历容器,打印出单词及其相应的类别码。 ```cpp #include <fstream> #include <sstream> #include <string> #include <vector> #include <unordered_map> // 定义单词类别枚举 enum class WordType { Identifier, Keyword, Number, Punctuation }; std::vector<std::pair<std::string, WordType>> tokenize(const std::string& filename) { std::ifstream file(filename); if (!file.is_open()) { throw std::runtime_error("Failed to open the file"); } std::vector<std::pair<std::string, WordType>> tokens; std::string line; while (std::getline(file, line)) { std::istringstream iss(line); std::string word; while (iss >> word) { // 类型判断和存储 if (is_identifier(word)) { tokens.push_back({word, WordType::Identifier}); } else if (is_keyword(word)) { tokens.push_back({word, WordType::Keyword}); } else if (is_number(word)) { tokens.push_back({word, WordType::Number}); } else { tokens.push_back({word, WordType::Punctuation}); } } } return tokens; } int main() { try { auto tokens = tokenize("input.txt"); for (const auto& token : tokens) { std::cout << "Word: " << token.first << ", Type: " << static_cast<int>(token.second) << "\n"; } } catch (const std::exception& e) { std::cerr << "Error: " << e.what() << '\n'; } return 0; } ```

使用c++读取大小为40G的txt文件,并将其中的数据进行升序排序,并输出到指定txt文件之中

### 回答1: 读取和排序40G的数据需要考虑内存使用和效率问题,可以采用外部排序(External Sorting)的方法。具体步骤如下: 1. 将40G的txt文件分成若干个小文件,每个小文件可以完全载入内存进行排序。 2. 对每个小文件进行排序,常见的排序算法有快速排序(QuickSort)、归并排序(MergeSort)等。这里推荐使用归并排序,因为归并排序在外部排序中表现更好。 3. 对每个小文件排序后,将它们合并成一个大文件。可以使用归并排序的思想,将每个小文件的第一个元素进行比较,取最小值放入输出文件中,然后再从该元素所在的小文件中取下一个元素进行比较,直到所有小文件的元素都被处理完。 4. 重复步骤3,直到所有小文件都被处理完,最终得到的输出文件即为升序排序后的结果。 代码示例: ```c++ #include <iostream> #include <fstream> #include <vector> #include <algorithm> #include <queue> using namespace std; const int MAX_BLOCK_SIZE = 1024 * 1024 * 1024; // 每个小文件的最大大小,这里设置为1GB const int MAX_LINE_SIZE = 1024; // 每行数据的最大长度 struct Block { char* data; int size; int offset; // 在原文件中的偏移量 Block(char* data, int size, int offset) : data(data), size(size), offset(offset) {} ~Block() { delete[] data; } }; struct CompareBlock { bool operator()(const Block& a, const Block& b) const { // 比较每个块的第一行数据,用于归并排序 return atoi(a.data) > atoi(b.data); } }; void sortAndWriteToFile(Block& block, const string& filename) { vector<string> lines; char* p = strtok(block.data, "\n"); while (p != nullptr) { lines.push_back(p); p = strtok(nullptr, "\n"); } sort(lines.begin(), lines.end()); ofstream fout(filename, ios::app); for (const auto& line : lines) { fout << line << endl; } } void mergeAndWriteToFile(vector<string>& lines, const string& filename) { sort(lines.begin(), lines.end()); ofstream fout(filename, ios::app); for (const auto& line : lines) { fout << line << endl; } } void externalSort(const string& inputFilename, const string& outputFilename) { ifstream fin(inputFilename); if (!fin.is_open()) { cerr << "Failed to open file: " << inputFilename << endl; return; } // 第一遍扫描,将文件分成若干个小文件 vector<string> filenames; char* blockData = new char[MAX_BLOCK_SIZE]; int blockOffset = 0; int blockSize = 0; while (fin.getline(blockData + blockSize, MAX_LINE_SIZE)) { int lineSize = strlen(blockData + blockSize); blockSize += lineSize + 1; if (blockSize > MAX_BLOCK_SIZE) { // 当前块已满,将其写入文件 string filename = "block_" + to_string(filenames.size()) + ".txt"; ofstream fout(filename); fout.write(blockData, blockSize); fout.close(); filenames.push_back(filename); blockOffset += blockSize; blockSize = 0; } } if (blockSize > 0) { // 将最后一块写入文件 string filename = "block_" + to_string(filenames.size()) + ".txt"; ofstream fout(filename); fout.write(blockData, blockSize); fout.close(); filenames.push_back(filename); } delete[] blockData; // 第二遍扫描,对每个小文件进行排序,并将排序结果写入输出文件 priority_queue<Block, vector<Block>, CompareBlock> pq; for (const auto& filename : filenames) { ifstream fin(filename); if (!fin.is_open()) { cerr << "Failed to open file: " << filename << endl; continue; } fin.seekg(0, ios::end); int fileSize = fin.tellg(); fin.seekg(0, ios::beg); char* data = new char[fileSize]; fin.read(data, fileSize); fin.close(); pq.emplace(data, fileSize, blockOffset); blockOffset += fileSize; } while (!pq.empty()) { Block block = pq.top(); pq.pop(); sortAndWriteToFile(block, outputFilename); if (block.size > MAX_BLOCK_SIZE) { // 如果当前块太大,则拆分成若干个小块,并重新加入优先队列 int numBlocks = block.size / MAX_BLOCK_SIZE; int lastBlockSize = block.size % MAX_BLOCK_SIZE; int blockStart = 0; for (int i = 0; i < numBlocks; i++) { char* data = new char[MAX_BLOCK_SIZE]; memcpy(data, block.data + blockStart, MAX_BLOCK_SIZE); pq.emplace(data, MAX_BLOCK_SIZE, block.offset + blockStart); blockStart += MAX_BLOCK_SIZE; } if (lastBlockSize > 0) { char* data = new char[lastBlockSize]; memcpy(data, block.data + blockStart, lastBlockSize); pq.emplace(data, lastBlockSize, block.offset + blockStart); } } else { delete block.data; } } // 第三遍扫描,将每个小文件中的数据合并成一个大文件 vector<string> blockLines(filenames.size()); vector<ifstream> finList(filenames.size()); for (int i = 0; i < filenames.size(); i++) { finList[i].open(filenames[i]); if (!finList[i].is_open()) { cerr << "Failed to open file: " << filenames[i] << endl; continue; } getline(finList[i], blockLines[i]); } while (true) { // 取每个块中的最小值 int minIndex = -1; for (int i = 0; i < blockLines.size(); i++) { if (finList[i].eof()) { continue; } if (minIndex == -1 || blockLines[i] < blockLines[minIndex]) { minIndex = i; } } if (minIndex == -1) { break; } mergeAndWriteToFile(blockLines, outputFilename); getline(finList[minIndex], blockLines[minIndex]); } } int main() { externalSort("input.txt", "output.txt"); return 0; } ``` 上述代码中,我们首先将大文件分成若干个小文件,每个小文件的大小不超过1GB,然后对每个小文件进行排序,并将排序结果写入输出文件。接着,我们将每个小文件的第一行数据加入一个优先队列中,并按照归并排序的思想将它们逐个取出,取出的同时从相应的小文件中取下一个元素进行比较,直到所有小文件的元素都被处理完。最终得到的输出文件即为升序排序后的结果。 ### 回答2: 要使用C语言读取大小为40G的txt文件并进行排序,需要采取一些策略来处理文件的大小和排序的效率。以下是一种可能的实现: 1. 首先,确定是否有足够的内存来处理40G的文件。如果内存不足,可以考虑使用外部排序算法,将文件划分为更小的部分进行排序并最后合并。 2. 创建一个用于存储文件数据的缓冲区。由于文件较大,可以选择多次读取文件的一部分数据到缓冲区中进行排序。 3. 使用文件指针打开输入txt文件和输出txt文件。可以使用fopen()函数打开文件,并用fscanf()函数逐行读取数据。 4. 将读取到的数据存储在数组中。 5. 对数组进行排序。可以使用标准库中的qsort()函数进行快速排序,或自己实现其他排序算法。 6. 将排序后的数据写入输出txt文件。使用fprintf()函数将数组中的排序后的数据逐行写入到输出文件中。 7. 重复步骤4-6,直到读取完整个输入文件。 8. 关闭输入和输出文件, 使用fclose()函数关闭文件。 需要注意的是,在处理大文件时,可能需要使用一些优化技巧,例如使用多线程或使用磁盘缓存来提高读写效率。同时,在进行文件处理时,也要注意错误处理和内存泄漏的情况。 以上就是一个简单的实现思路,根据实际情况和需求可能需要进行更详细和复杂的处理。 ### 回答3: 要使用C语言读取大小为40G的txt文件并进行排序是一项庞大的任务。由于文本文件大小超过了内存的限制,我们不能一次性将整个文件读入内存并进行排序。 为了处理这个问题,我们可以采用外部排序算法,其中涉及将大文件划分为小块,并分别对这些小块进行排序。然后,我们可以使用归并排序算法将所有小块合并到一个有序文件中。 首先,我们需要将大文件划分为多个小文件,而不是一次性读取整个文件。我们可以使用缓冲区,每次只读取一部分数据,然后将其写入新的临时文件。在读取和写入期间,我们可以使用快速排序或堆排序等算法对数据进行排序。 在排序完成后,我们可以使用归并排序算法合并所有的临时文件。归并排序算法更适合处理大量数据,它将多个有序文件合并为一个大文件。 最后,我们将排序后的数据写入指定的txt文件中。 这个任务需要计算机性能较强的设备、大量的时间和存储空间。我建议在处理大文件时使用适当的硬件和利用并行计算的优势,以加快处理速度。 总的来说,使用C语言读取并排序大型txt文件是一项挑战性的任务,需要使用外部排序和归并排序算法,以及较强的硬件和适当的计算资源。
阅读全文

相关推荐

最新推荐

recommend-type

C++从文本文件读取数据到vector中的方法

在C++编程中,有时我们需要从文本文件读取数据并将其存储到容器中,例如`std::vector`。`std::vector`是一个动态大小的数组,它可以方便地扩展以适应不断变化的数据需求。本篇文章将详细讲解如何使用C++从文本文件...
recommend-type

C++实现一行一行读取文本的方法

"C++实现一行一行读取文本的方法" C++实现一行一行读取文本的方法是非常重要的编程技术,今天我们将详细介绍如何使用C++实现一行一行读取文本的方法。 首先,让我们了解为什么需要一行一行读取文本。读取文本文件...
recommend-type

OpenCV cv.Mat与.txt文件数据的读写操作

这两个函数可以实现.txt文件的读写操作,其中WriteData函数将矩阵数据写入到.txt文件中,而LoadData函数将.txt文件中的数据读取到矩阵中。 结论: OpenCV cv.Mat与.txt文件的读写操作是非常重要的,使用cvSave和...
recommend-type

c++读取和写入TXT文件的整理方法

"C++读取和写入TXT文件的整理方法" C++语言中,读取和写入TXT文件是一种非常常见的操作。今天,我们将讲解C++读取和写入TXT文件的整理方法,并提供相关的代码示例。 标题:C++读取和写入TXT文件的整理方法 描述:...
recommend-type

C/C++读写注册表中二进制数据(代码示例)

C/C++读写注册表中二进制数据 Windows API 提供了一组函数来操作注册表中的键值对,包括读写二进制数据。下面我们将详细介绍使用 RegOpenKeyEx() 函数和 RegSetValueEx() 函数来实现对注册表某项写入二进制键值。 ...
recommend-type

3dsmax高效建模插件Rappatools3.3发布,附教程

资源摘要信息:"Rappatools3.3.rar是一个与3dsmax软件相关的压缩文件包,包含了该软件的一个插件版本,名为Rappatools 3.3。3dsmax是Autodesk公司开发的一款专业的3D建模、动画和渲染软件,广泛应用于游戏开发、电影制作、建筑可视化和工业设计等领域。Rappatools作为一个插件,为3dsmax提供了额外的功能和工具,旨在提高用户的建模效率和质量。" 知识点详细说明如下: 1. 3dsmax介绍: 3dsmax,又称3D Studio Max,是一款功能强大的3D建模、动画和渲染软件。它支持多种工作流程,包括角色动画、粒子系统、环境效果、渲染等。3dsmax的用户界面灵活,拥有广泛的第三方插件生态系统,这使得它成为3D领域中的一个行业标准工具。 2. Rappatools插件功能: Rappatools插件专门设计用来增强3dsmax在多边形建模方面的功能。多边形建模是3D建模中的一种技术,通过添加、移动、删除和修改多边形来创建三维模型。Rappatools提供了大量高效的工具和功能,能够帮助用户简化复杂的建模过程,提高模型的质量和完成速度。 3. 提升建模效率: Rappatools插件中可能包含诸如自动网格平滑、网格优化、拓扑编辑、表面细分、UV展开等高级功能。这些功能可以减少用户进行重复性操作的时间,加快模型的迭代速度,让设计师有更多时间专注于创意和细节的完善。 4. 压缩文件内容解析: 本资源包是一个压缩文件,其中包含了安装和使用Rappatools插件所需的所有文件。具体文件内容包括: - index.html:可能是插件的安装指南或用户手册,提供安装步骤和使用说明。 - license.txt:说明了Rappatools插件的使用许可信息,包括用户权利、限制和认证过程。 - img文件夹:包含用于文档或界面的图像资源。 - js文件夹:可能包含JavaScript文件,用于网页交互或安装程序。 - css文件夹:可能包含层叠样式表文件,用于定义网页或界面的样式。 5. MAX插件概念: MAX插件指的是专为3dsmax设计的扩展软件包,它们可以扩展3dsmax的功能,为用户带来更多方便和高效的工作方式。Rappatools属于这类插件,通过在3dsmax软件内嵌入更多专业工具来提升工作效率。 6. Poly插件和3dmax的关系: 在3D建模领域,Poly(多边形)是构建3D模型的主要元素。所谓的Poly插件,就是指那些能够提供额外多边形建模工具和功能的插件。3dsmax本身就支持强大的多边形建模功能,而Poly插件进一步扩展了这些功能,为3dsmax用户提供了更多创建复杂模型的方法。 7. 增强插件的重要性: 在3D建模和设计行业中,增强插件对于提高工作效率和作品质量起着至关重要的作用。随着技术的不断发展和客户对视觉效果要求的提高,插件能够帮助设计师更快地完成项目,同时保持较高的创意和技术水准。 综上所述,Rappatools3.3.rar资源包对于3dsmax用户来说是一个很有价值的工具,它能够帮助用户在进行复杂的3D建模时提升效率并得到更好的模型质量。通过使用这个插件,用户可以在保持工作流程的一致性的同时,利用额外的工具集来优化他们的设计工作。
recommend-type

【R-Studio技术路径】:从RAID 5数据恢复基础到高级操作

![【R-Studio技术路径】:从RAID 5数据恢复基础到高级操作](https://www.primearraystorage.com/assets/raid-animation/raid-level-3.png) # 摘要 随着信息技术的发展,数据丢失问题日益突出,RAID 5作为常见的数据存储解决方案,其数据恢复技术显得尤为重要。本文首先介绍了RAID 5数据恢复的基础知识,然后详细解析了R-Studio软件的界面和核心功能,重点探讨了其在RAID 5数据恢复中的应用实践,包括磁盘镜像创建、数据提取、数据重组策略及一致性验证。进一步,本文还涉及了R-Studio的进阶技术,如脚本编
recommend-type

``` 定义1个圆类,成员有:1个半径成员变量,1个构造方法给成员变量赋初值,1个求面积方法。```定义1个圆类,成员有:1个半径成员变量,1个构造方法给成员变量赋初值,1个求面积方法。

当然,我们可以定义一个简单的`Circle`类,如下所示: ```java public class Circle { // 定义一个私有的半径成员变量 private double radius; // 构造方法,用于初始化半径 public Circle(double initialRadius) { this.radius = initialRadius; } // 求圆面积的方法 public double getArea() { return Math.PI * Math.pow(radiu
recommend-type

Ruby实现PointInPolygon算法:判断点是否在多边形内

资源摘要信息:"PointInPolygon算法的Ruby实现是一个用于判断点是否在多边形内部的库。该算法通过计算点与多边形边界交叉线段的交叉次数来判断点是否在多边形内部。如果交叉数为奇数,则点在多边形内部,如果为偶数或零,则点在多边形外部。库中包含Pinp::Point类和Pinp::Polygon类。Pinp::Point类用于表示点,Pinp::Polygon类用于表示多边形。用户可以向Pinp::Polygon中添加点来构造多边形,然后使用contains_point?方法来判断任意一个Pinp::Point对象是否在该多边形内部。" 1. Ruby语言基础:Ruby是一种动态、反射、面向对象、解释型的编程语言。它具有简洁、灵活的语法,使得编写程序变得简单高效。Ruby语言广泛用于Web开发,尤其是Ruby on Rails这一著名的Web开发框架就是基于Ruby语言构建的。 2. 类和对象:在Ruby中,一切皆对象,所有对象都属于某个类,类是对象的蓝图。Ruby支持面向对象编程范式,允许程序设计者定义类以及对象的创建和使用。 3. 算法实现细节:算法基于数学原理,即计算点与多边形边界线段的交叉次数。当点位于多边形内时,从该点出发绘制射线与多边形边界相交的次数为奇数;如果点在多边形外,交叉次数为偶数或零。 4. Pinp::Point类:这是一个表示二维空间中的点的类。类的实例化需要提供两个参数,通常是点的x和y坐标。 5. Pinp::Polygon类:这是一个表示多边形的类,由若干个Pinp::Point类的实例构成。可以使用points方法添加点到多边形中。 6. contains_point?方法:属于Pinp::Polygon类的一个方法,它接受一个Pinp::Point类的实例作为参数,返回一个布尔值,表示传入的点是否在多边形内部。 7. 模块和命名空间:在Ruby中,Pinp是一个模块,模块可以用来将代码组织到不同的命名空间中,从而避免变量名和方法名冲突。 8. 程序示例和测试:Ruby程序通常包含方法调用、实例化对象等操作。示例代码提供了如何使用PointInPolygon算法进行点包含性测试的基本用法。 9. 边缘情况处理:算法描述中提到要添加选项测试点是否位于多边形的任何边缘。这表明算法可能需要处理点恰好位于多边形边界的情况,这类点在数学上可以被认为是既在多边形内部,又在多边形外部。 10. 文件结构和工程管理:提供的信息表明有一个名为"PointInPolygon-master"的压缩包文件,表明这可能是GitHub等平台上的一个开源项目仓库,用于管理PointInPolygon算法的Ruby实现代码。文件名称通常反映了项目的版本管理,"master"通常指的是项目的主分支,代表稳定版本。 11. 扩展和维护:算法库像PointInPolygon这类可能需要不断维护和扩展以适应新的需求或修复发现的错误。开发者会根据实际应用场景不断优化算法,同时也会有社区贡献者参与改进。 12. 社区和开源:Ruby的开源生态非常丰富,Ruby开发者社区非常活跃。开源项目像PointInPolygon这样的算法库在社区中广泛被使用和分享,这促进了知识的传播和代码质量的提高。 以上内容是对给定文件信息中提及的知识点的详细说明。根据描述,该算法库可用于各种需要点定位和多边形空间分析的场景,例如地理信息系统(GIS)、图形用户界面(GUI)交互、游戏开发、计算机图形学等领域。
recommend-type

【R-Studio恢复工具解析】:RAID 5恢复的功能优势与实际应用

![【R-Studio恢复工具解析】:RAID 5恢复的功能优势与实际应用](https://www.stellarinfo.com/blog/wp-content/uploads/2023/10/RAID-5-Advantages-and-Disadvantages.jpg) # 摘要 RAID 5技术因其高效的数据存储和容错能力被广泛应用。然而,数据丢失问题仍时有发生,R-Studio作为一种功能强大的恢复工具,为解决这一问题提供了有效的技术方案。本文概述了RAID 5的基本概念、R-Studio的理论基础及其数据恢复原理。通过分析R-Studio的主要功能和恢复流程,本文还探讨了该工具