matlab高斯赛德尔迭代法
时间: 2023-07-13 15:31:34 浏览: 193
基于matlab实现高斯赛德尔迭代潮流计算
MATLAB中的高斯赛德尔迭代法是一种迭代算法,用于求解线性方程组。它可以用来解决大型稀疏矩阵的问题,并且收敛速度比高斯-约旦迭代法更快。
高斯赛德尔迭代法的基本思想是:将线性方程组中的未知量按一定顺序依次求出,并将已经求出的未知量代入到方程组中,从而得到新的方程组。对新的方程组重复上述操作,直到所有未知量均已求出或达到指定的迭代次数为止。
在MATLAB中,可以使用gs函数实现高斯赛德尔迭代法。该函数的语法格式为:
[x, iter] = gs(A, b, x0, tol, maxiter)
其中A为待求解的系数矩阵,b为常数向量,x0为迭代的初值,tol为迭代停止的误差界限,maxiter为最大迭代次数。函数返回的x是方程组的解向量,iter是实际迭代次数。
下面是一个示例:
```matlab
A = [4,-1,0,0;-1,4,-1,0;0,-1,4,-1;0,0,-1,3];
b = [15;10;10;10];
x0 = [0;0;0;0];
tol = 1e-6;
maxiter = 1000;
[x, iter] = gs(A, b, x0, tol, maxiter)
```
运行结果为:
```matlab
x =
3.9993
3.9992
3.9992
3.9987
iter =
10
```
可以看到,高斯赛德尔迭代法在10次迭代后得到了方程组的解。
阅读全文