实用机器学习-2023- 实验一:实现k折交叉验证

时间: 2024-09-09 13:12:05 浏览: 20
实用机器学习实验之一通常涉及K折交叉验证(K-Fold Cross Validation),这是一种评估模型性能和选择超参数的有效方法。以下是实验大概步骤: **实验一:K折交叉验证实现** 1. **理解概念**: - K折交叉验证将原始数据集分割成K个相等大小的部分,每次用其中K-1部分作为训练集,剩下的那部分作为测试集(称为验证集)。这个过程会重复K次,每次都轮换一次验证集的选择,最终汇总所有结果。 2. **Python库使用**: - Python中常用的库如`sklearn`提供了内置函数`cross_val_score`,用于快速实现K折交叉验证。例如: ```python from sklearn.model_selection import cross_val_score model = ... # 初始化你想要评估的模型 X = ... # 输入特征数据 y = ... # 目标变量 scores = cross_val_score(model, X, y, cv=k) ``` 3. **流程步骤**: - 定义模型、划分数据集(一般随机) - 对每个训练集进行训练 - 使用验证集评估模型性能,如计算准确率、精度、召回率等指标 - 记录每次验证的结果 - 取平均值得到最终的模型性能评估 4. **优点**: - 减少因单次划分带来的偶然性影响,更稳定地估计模型性能 - 可以利用所有数据进行训练和测试 **相关问题--:** 1. K折交叉验证如何处理数据不平衡问题? 2. 如何选择合适的K值? 3. 除了性能评估外,K折交叉验证还有哪些应用场景?

相关推荐

[2023-05-31 11:07:02] Started by user coding [2023-05-31 11:07:02] Running in Durability level: MAX_SURVIVABILITY [2023-05-31 11:07:04] [Pipeline] Start of Pipeline [2023-05-31 11:07:06] [Pipeline] getContext [2023-05-31 11:07:07] [Pipeline] node [2023-05-31 11:07:07] Running on Jenkins in /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995 [2023-05-31 11:07:07] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] withEnv [2023-05-31 11:07:08] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] withDockerRegistry [2023-05-31 11:07:08] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] isUnix [2023-05-31 11:07:08] [Pipeline] sh [2023-05-31 11:07:08] + docker inspect -f . public/docker/nodejs:18-2022 [2023-05-31 11:07:08] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-221f7a67/script.sh: 1: docker: not found [2023-05-31 11:07:08] [Pipeline] isUnix [2023-05-31 11:07:08] [Pipeline] sh [2023-05-31 11:07:09] + docker inspect -f . coding-public-docker.pkg.coding.net/public/docker/nodejs:18-2022 [2023-05-31 11:07:09] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-4892b310/script.sh: 1: docker: not found [2023-05-31 11:07:09] [Pipeline] isUnix [2023-05-31 11:07:09] [Pipeline] sh [2023-05-31 11:07:09] + docker pull coding-public-docker.pkg.coding.net/public/docker/nodejs:18-2022 [2023-05-31 11:07:09] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-0770ad1b/script.sh: 1: docker: not found [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // withDockerRegistry [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // withEnv [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // node [2023-05-31 11:07:09] [Pipeline] End of Pipeline [2023-05-31 11:07:09] ERROR: script returned exit code 127 [2023-05-31 11:07:09] Finished: FAILURE

最新推荐

recommend-type

Python实现K折交叉验证法的方法步骤

K折交叉验证(K-Fold Cross-Validation)是一种常用的统计学方法,用于评估机器学习模型的性能。它通过将原始数据集分成K个子集,然后进行K次训练和测试,每次用K-1个子集的数据训练模型,剩下的一个子集作为测试集...
recommend-type

机器学习实战 - KNN(K近邻)算法PDF知识点详解 + 代码实现

**K-近邻(KNN)算法**是机器学习领域中一种基础且直观的分类算法。它的核心思想是根据输入样本最接近的K个训练样本的类别来预测新样本的类别。KNN算法最早由Cover和Hart在1968年提出,是一种基于实例的学习方法,...
recommend-type

机器学习-线性回归整理PPT

线性回归是一种基础且重要的统计学与机器学习方法,它用于预测一个连续数值型的输出变量,基于一个或多个输入变量。线性回归的核心思想是寻找一条直线(在一维情况下)或超平面(在多维情况下)来最好地拟合数据,这...
recommend-type

lammps-reaxff-机器学习-电化学.pdf

深度学习是机器学习的一个分支,主要涉及神经网络的构建,包括逻辑回归、梯度下降和计算图。此外,课程还将教授经典机器学习模型,如线性回归、决策树、支持向量机和集成学习方法,如AdaBoost、GBDT和XGBoost。材料...
recommend-type

Python机器学习算法之k均值聚类(k-means)

**Python机器学习算法-k均值聚类(k-means)** ...总的来说,k-means聚类是机器学习领域中一种基础而实用的算法,适用于大量数据的初步分析和分类。通过不断优化和实践,可以提高算法的准确性和效率。
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。