用python写符号聚合近似代码
时间: 2023-06-08 10:07:51 浏览: 242
好的,以下是一个简单的用Python实现符号聚合近似的代码:
```
import numpy as np
import sympy
def symbolic_aggregation_approximation(X, y):
n_samples, n_features = X.shape
# Create a symbolic variable for each feature
features = [sympy.Symbol(f'x{i}') for i in range(n_features)]
# Create a list of all possible products/combinations of features
terms = list(sympy.ordered(sympy.Mul(*comb) for comb in sympy.combinatoric.cartesian_product(
*[features] * 2))) + features
# Create a matrix where each row is the evaluation of all terms for a single sample
X_sym = np.empty((n_samples, len(terms)))
for i in range(n_samples):
for j, term in enumerate(terms):
X_sym[i, j] = float(term.subs(dict(zip(features, X[i]))))
# Compute the least squares solution for the linear regression problem
w = np.linalg.lstsq(X_sym, y, rcond=None)[0]
# Create a symbolic expression for the linear model
model = sum(sympy.Mul(w[i], term) for i, term in enumerate(terms))
return model
```
这个函数输入一个特征矩阵X和标签向量y,输出一个符号表达式,代表使用符号聚合近似得到的线性回归模型。具体实现中,在每两个特征间和所有特征间分别计算所有可能的积的组合,加上单独的特征作为符号变量,得到一个符号表达式的列表。然后,对于每个样本,将这些符号表达式替换为对应的特征值计算出在符号空间上的值,并将得到的值构成符号聚合近似矩阵。最后,使用最小二乘法得到线性回归系数,构建出符号表达式的线性模型。
阅读全文