with open(data_set_path + data_set, 'r', encoding="utf-8") as f: data_corpus = csv.reader(f) next(data_corpus)
时间: 2024-06-02 19:13:04 浏览: 178
根据你提供的代码,这个问题的答案是读取CSV文件并跳过文件的第一行标题行。具体来说,代码打开名为"data_set_path + data_set"的文件,使用UTF-8编码读取文件,并将其作为CSV文件解析。然后,代码调用"next(data_corpus)"来读取CSV文件的下一行,跳过了第一行标题行,因为标题行通常包含列名称而不是数据。注意,"data_set_path"和"data_set"是变量,可能需要在代码的其他位置定义。
相关问题
import jieba from sklearn.feature_extraction.text import TfidfVectorizer import numpy as np import pandas as pd # 读取停用词文件 def read_stopwords(file_path): with open(file_path, 'r', encoding='gbk') as f: stopwords = [line.strip() for line in f] return set(stopwords) # 中文分词 def chinese_word_cut(text, stopwords): words = jieba.cut(text) result = [] for word in words: if word not in stopwords: result.append(word) return " ".join(result) # 读取CSV文件 weibo_data = pd.read_csv('E:\Python自然语言处理\data\weibo_Convid19.csv', sep='\t') df = weibo_data['text_raw'] # 获取停用词集合 stopwords = read_stopwords('E:\Python自然语言处理\data\stopword.txt') # 对每条微博进行分词和去停用词 corpus_list = df.apply(lambda x: chinese_word_cut(x, stopwords)) # 提取关键词 corpus = ' '.join(corpus_list) tfidf = TfidfVectorizer() tf_key = tfidf.fit_transform([corpus]) word = tfidf.get_feature_names() weight = tf_key.toarray()[0] w_sort = np.argsort(-weight) print('Top 20 keywords:') for i in range(20): print(word[w_sort[i]])结果含有表情包,怎么去除
可以使用正则表达式来去除文本中的表情包,例如:
```
import re
def remove_emoji(text):
emoji_pattern = re.compile("["
u"\U0001F600-\U0001F64F" # emoticons
u"\U0001F300-\U0001F5FF" # symbols & pictographs
u"\U0001F680-\U0001F6FF" # transport & map symbols
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
"]+", flags=re.UNICODE)
return emoji_pattern.sub(r'', text)
# 在 chinese_word_cut 函数中调用 remove_emoji 函数
def chinese_word_cut(text, stopwords):
text = remove_emoji(text)
words = jieba.cut(text)
result = []
for word in words:
if word not in stopwords:
result.append(word)
return " ".join(result)
```
这样就可以在分词前去除文本中的表情包。
有两个txt 都是 a|b的格式, 秦老汉海鲜铺|鱼鲜 龙啸养身食府|鱼鲜 你计算A.txt 中的 每行中的a,对应B.txt中的a,的文本相似度,将B.txt中的a 文本相似度最高的替换到 A.txt 中的 a python
要在Python中实现这个任务,你可以使用`nltk`库来进行文本处理和计算余弦相似度,然后找到两个文件中最匹配的一对并替换A.txt中的内容。以下是步骤的一个简单示例:
首先,你需要安装`nltk`库(如果尚未安装):
```bash
pip install nltk
```
然后编写Python代码:
```python
import csv
from collections import Counter
from nltk.corpus import stopwords
from nltk.tokenize import word_tokenize
from nltk.stem import PorterStemmer
from sklearn.feature_extraction.text import TfidfVectorizer
# 加载停用词和词汇量
nltk.download('stopwords')
nltk.download('punkt')
def load_data(file_path):
with open(file_path, 'r', encoding='utf-8') as f:
return [line.strip().split('|')[0] for line in f]
def preprocess(text):
stemmer = PorterStemmer()
stop_words = set(stopwords.words('chinese'))
words = word_tokenize(text)
filtered_words = [stemmer.stem(word) for word in words if word not in stop_words]
return ' '.join(filtered_words)
def calculate_similarity(a_text, b_texts):
vectorizer = TfidfVectorizer(preprocessor=preprocess).fit([a_text] + b_texts)
vectors = vectorizer.transform([a_text] + b_texts)
similarities = vectors[:, 0].dot(vectors.T) / (vectors.norm(axis=1) * vectors.norm(axis=1).T)
max_index = similarities.argmax()
if max_index == 0: # 如果第一个元素是最相似的,说明a_text本身就是最优解
return a_text
else:
return b_texts[max_index - 1]
# 读取数据
a_data = load_data('A.txt')
b_data = load_data('B.txt')
# 计算并替换A.txt中的文本
for i, a_line in enumerate(a_data):
similarity = calculate_similarity(a_line, b_data)
a_data[i] = similarity
print(f"原始: {a_line},替换成: {similarity}")
# 更新A.txt
with open('A.txt', 'w', newline='', encoding='utf-8') as out_file:
writer = csv.writer(out_file, delimiter='|')
writer.writerow(['新文本'] + a_data)
阅读全文