Ceemdan-lstm代码
时间: 2023-10-05 18:10:18 浏览: 218
以下是使用Ceemdan和LSTM结合的代码示例:
```python
import numpy as np
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, LSTM
import ceemdan
# 准备数据
data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
n_steps = 3
# 将数据转换成监督学习问题
X, y = list(), list()
for i in range(len(data)):
end_ix = i + n_steps
if end_ix > len(data)-1:
break
seq_x, seq_y = data[i:end_ix], data[end_ix]
X.append(seq_x)
y.append(seq_y)
X, y = np.array(X), np.array(y)
X = X.reshape((X.shape[0], X.shape[1], 1))
# 将数据进行CEEMDAN分解
emd = ceemdan.ceemdan(data, num_sifts=4)
imfs = emd.get_imfs_and_residue()
# 将每个IMF转换成监督学习问题
X_emd, y_emd = list(), list()
for i in range(len(imfs)):
emd_data = imfs[i]
for j in range(len(emd_data)):
end_ix = j + n_steps
if end_ix > len(emd_data)-1:
break
seq_x, seq_y = emd_data[j:end_ix], emd_data[end_ix]
X_emd.append(seq_x)
y_emd.append(seq_y)
X_emd, y_emd = np.array(X_emd), np.array(y_emd)
X_emd = X_emd.reshape((X_emd.shape[0], X_emd.shape[1], 1))
# 训练模型
model = Sequential()
model.add(LSTM(50, activation='relu', input_shape=(n_steps, 1)))
model.add(Dense(1))
model.compile(optimizer='adam', loss='mse')
model.fit(X, y, epochs=200, verbose=0)
model_emd = Sequential()
model_emd.add(LSTM(50, activation='relu', input_shape=(n_steps, 1)))
model_emd.add(Dense(1))
model_emd.compile(optimizer='adam', loss='mse')
model_emd.fit(X_emd, y_emd, epochs=200, verbose=0)
# 预测
x_input = np.array([8, 9, 10])
x_input = x_input.reshape((1, n_steps, 1))
yhat = model.predict(x_input, verbose=0)
print(yhat[0][0])
emd_input = ceemdan.ceemdan(x_input[0], num_sifts=4)
emd_data = emd_input.get_imfs_and_residue()
emd_input = np.array(emd_data).reshape((1, n_steps, 4))
yhat_emd = model_emd.predict(emd_input, verbose=0)
yhat = yhat_emd[-1][0]
for i in range(1, len(emd_data)):
yhat += yhat_emd[-i-1][0]
print(yhat)
```
在这个例子中,我们使用CEEMDAN分解将原始数据分解成多个IMF。然后,我们将每个IMF转换成监督学习问题,并使用LSTM模型进行训练。最后,我们可以使用训练好的模型进行预测。
阅读全文