awnn_det_post
时间: 2023-08-12 19:07:29 浏览: 147
`awnn_det_post` 是一个函数或方法,用于对神经网络的目标检测结果进行后处理。根据命名和常见约定,它可能接受一个 `Awnn_Result_t` 类型的参数,表示神经网络的目标检测结果,并返回处理后的结果。
在后处理过程中,可能会对目标检测结果进行一些额外的处理、筛选或转换,以提取更有用的信息或满足特定需求。具体的后处理操作可以根据代码的实现而有所不同。
如果有更多关于 `awnn_det_post` 的代码或上下文信息,我可以给出更准确的解释和帮助。
相关问题
static int npu_detect_callback_body(unsigned char *pBuffer, int size, int ch_idx, Awnn_Context_t *context) { unsigned char *body_input_buf[2] = {NULL, NULL}; aialgo_context_t *pctx = get_aicontext(); int ret = 0; body_input_buf[0] = pBuffer; body_input_buf[1] = pBuffer + size * 2 / 3; awnn_set_input_buffers(context, body_input_buf); long start_time = get_time_in_us(); awnn_run(context); if (1 == pctx->ai_det_runtime_print || 3 == pctx->ai_det_runtime_print) { alogd("body awnn_run cost %dms", (get_time_in_us() - start_time) / 1000); } Awnn_Post_t post; post.type = (AWNN_DET_POST_TYPE)pctx->attr.ch_info[ch_idx].nbg_type; post.width = pctx->attr.ch_info[ch_idx].src_width; post.height = pctx->attr.ch_info[ch_idx].src_height; post.thresh = pctx->attr.ch_info[ch_idx].thresh; Awnn_Result_t result; awnn_det_post(context, &post, &result); if (result.valid_cnt > 0) { if (pctx->attr.ch_info[ch_idx].draw_orl_enable) { paint_object_detect_region_body(&result, ch_idx); } for (int j = 0; j < result.valid_cnt; j++) { if (1 == pctx->ai_det_result_print || 5 == pctx->ai_det_result_print) { alogd("ch_idx=%d, [%d/%d] cls %d, prob %f, rect[%d,%d,%d,%d]", ch_idx, j + 1, result.valid_cnt, result.boxes[j].label, result.boxes[j].score, result.boxes[j].xmin, result.boxes[j].ymin, result.boxes[j].xmax, result.boxes[j].ymax); } else if (2 == pctx->ai_det_result_print || 6 == pctx->ai_det_result_print) { if (0 == result.boxes[j].label) { alogd("ch_idx=%d, [%d/%d] cls %d, prob %f, rect[%d,%d,%d,%d]", ch_idx, j + 1, result.valid_cnt, result.boxes[j].label, result.boxes[j].score, result.boxes[j].xmin, result.boxes[j].ymin, result.boxes[j].xmax, result.boxes[j].ymax); } } } ret = result.valid_cnt; } return ret; }
这段代码是一个 `npu_detect_callback_body` 函数的实现,它可能是用于处理某种神经网络模型的检测结果的回调函数。根据代码的结构和变量名可以推测,它可能是在某个视频流或图像序列中进行目标检测的过程中被调用的。
以下是代码的大致解释:
1. 首先,在函数开始部分定义了一些变量,包括一个指向两个缓冲区的指针 `body_input_buf`、一个指向全局上下文结构体 `pctx` 的指针和一个整数变量 `ret`。
2. 然后,将输入数据分为两个部分,并将这两个部分的指针存储在 `body_input_buf` 中。
3. 接下来,通过调用 `awnn_set_input_buffers` 函数将分割后的输入数据设置为神经网络模型的输入缓冲区。
4. 调用 `awnn_run` 函数来运行神经网络模型。
5. 如果全局上下文结构体中的 `ai_det_runtime_print` 字段为 1 或 3,则打印神经网络模型运行的耗时。
6. 创建 `Awnn_Post_t` 结构体实例 `post`,并根据全局上下文结构体中的相关字段给其赋值。
7. 调用 `awnn_det_post` 函数,将 `post` 结构体和 `Awnn_Result_t` 结构体实例 `result` 作为参数,以获取检测结果。
8. 如果检测结果中有效目标计数大于 0,则根据全局上下文结构体中的相关字段进行绘制或打印。
9. 返回有效目标计数。
需要注意的是,这段代码可能是某个特定项目中的一部分,具体的含义和功能还需要根据整个项目的上下文来确定。
super(Ui_MainWindow, self).__init__(parent) parser_car_det = argparse.ArgumentParser() # parser.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--weights', type=str, default='weights-s/best1.pt', help='model.pt path') parser_car_det.add_argument('--source', type=str, default='input/3.mp4', help='source') # file/folder, 0 for webcam # parser.add_argument('--source', type=str, default='rtsp://admin:hik12345@192.168.1.64:554//Streaming/Channels/101', help='source') # file/folder, 0 for webcam parser_car_det.add_argument('--output', type=str, default='inference/output', help='output folder') # output folder parser_car_det.add_argument('--img-size', type=int, default=640, help='inference size (pixels)') parser_car_det.add_argument('--conf-thres', type=float, default=0.4, help='object confidence threshold') parser_car_det.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS') parser_car_det.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)') parser_car_det.add_argument('--device', default='cpu', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser_car_det.add_argument('--view-img', action='store_true', help='display results') parser_car_det.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser_car_det.add_argument('--classes', nargs='+', type=int, help='filter by class') parser_car_det.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS') parser_car_det.add_argument('--augment', action='store_true', help='augmented inference') parser_car_det.add_argument('--idx', default='2', help='idx') self.opt_car_det = parser_car_det.parse_args() self.opt_car_det.img_size = check_img_size(self.opt_car_det.img_size) half = 0 source_car_det, weights_car_det, view_img_car_det, save_txt_car_det, imgsz_car_det = self.opt_car_det.source, self.opt_car_det.weights, self.opt_car_det.view_img, self.opt_car_det.save_txt, self.opt_car_det.img_size self.device_car_det = torch_utils.select_device(self.opt_car_det.device) self.half_car_det = 0 # half precision only supported on CUDA cudnn.benchmark = True
super(Ui_MainWindow, self).__init__(parent) 表示使用父类的构造函数来初始化子类,这里父类是 Ui_MainWindow。
parser_car_det = argparse.ArgumentParser() 表示定义了一个解析器,用来解析输入的参数。
阅读全文