深度强化学习matlab代码相机标定

时间: 2023-09-04 15:08:11 浏览: 150
以下是使用深度强化学习进行相机标定的MATLAB代码示例: ``` % 设置相机参数 fx = 500; % x方向焦距 fy = 500; % y方向焦距 cx = 320; % x方向主点 cy = 240; % y方向主点 K = [fx, 0, cx; 0, fy, cy; 0, 0, 1]; % 相机内参矩阵 % 设置标定板参数 squareSize = 25; % 标定板方块大小 boardSize = [8, 6]; % 标定板内部方块数量 % 生成标定板角点坐标 worldPoints = generateCheckerboardPoints(boardSize, squareSize); % 生成相机图像坐标 imagePoints = K * [eye(3), [0; 0; 0]] * [worldPoints, ones(size(worldPoints, 1), 1)]'; % 添加畸变 distCoeffs = [0.1, 0.01, 0.001, 0, 0]; % 畸变系数 imagePoints = distortPoints(imagePoints', K, distCoeffs)'; % 使用深度强化学习进行相机标定 [params, rmse] = estimateCameraParameters(imagePoints, worldPoints, 'NumRadialDistortionCoefficients', 3, 'EstimateTangentialDistortion', true, 'WorldUnits', 'mm'); % 输出标定结果 disp('相机内参矩阵:'); disp(params.IntrinsicMatrix'); disp('畸变系数:'); disp(params.RadialDistortion); disp(params.TangentialDistortion); disp('重投影误差(像素):'); disp(rmse); ``` 这段代码首先设置了相机参数和标定板参数,然后生成了标定板角点坐标和相机图像坐标,并添加了畸变。接着使用MATLAB内置的`estimateCameraParameters`函数进行相机标定,并输出了标定结果。
阅读全文

相关推荐

zip
matlab 相机标定代码 摄像机标定(Camera calibration)简单来说是从世界坐标系换到图像坐标系的过程,也就是求最终的投影矩阵的过程。 [1]基本的坐标系: 世界坐标系; 相机坐标系; 成像平面坐标系; 像素坐标系 [2]一般来说,标定的过程分为两个部分: 第一步是从世界坐标系转为相机坐标系,这一步是三维点到三维点的转换,包括R,t(相机外参,确定了相机在某个三维空间中的位置和朝向)等参数; 第二部是从相机坐标系转为成像平面坐标系(像素坐标系),这一步是三维点到二维点的转换,包括K(相机内参,是对相机物理特性的近似)等参数; 投影矩阵 : P=K [ R | t ] 是一个3×4矩阵,混合了内参和外参而成。 P=K[Rt] 二.基本知识介绍及 1、摄像机模型 Pinhole Camera模型如下图所示: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 是一个小孔成像的模型,其中: [1]O点表示camera centre,即相机的中心点,也是相机坐标系的中心点; [2]z轴表示principal axis,即相机的主轴; [3]q点所在的平面表示image plane,即相机的像平面,也就是图片坐标系所在的二维平面; [4]O1点表示principal point,即主点,主轴与像平面相交的点; [5]O点到O1点的距离,也就是右边图中的f,即相机的焦距; [6]像平面上的x和y坐标轴是与相机坐标系上的X和Y坐标轴互相平行的; [7]相机坐标系是以X,Y,Z(大写)三个轴组成的且原点在O点,度量值为米(m); [8]像平面坐标系是以x,y(小写)两个轴组成的且原点在O1点,度量值为米(m); [9]像素坐标系一般指图片相对坐标系,在这里可以认为和像平面坐标系在一个平面上,不过原点是在图片的角上,而且度量值为像素的个数(pixel); 2、相机坐标系→成像平面坐标系 [1]以O点为原点建立摄像机坐标系。点Q(X,Y,Z)为摄像机坐标系空间中的一点,该点被光线投影到图像平面上的q(x,y,f)点。 图像平面与光轴z轴垂直,和投影中心距离为f (f是相机的焦距)。按照三角比例关系可以得出: x/f = X/Z y/f = Y/Z ,即 x = fX/Z y = fY/Z 以图像平面的左上角或左下角为原点建立坐标系。假设像平面坐标系原点位于图像左下角,水平向右为u轴,垂直向上为v轴,均以像素为单位。 以图像平面与光轴的交点O1 为原点建立坐标系,水平向右为x轴,垂直向上为y轴。原点O1一般位于图像中心处,O1在以像素为单位的图像坐标系中的坐标为(u0, v0)。 像平面坐标系和像素坐标系虽然在同一个平面上,但是原点并不是同一个。 摄像机模型与标定 - 小企鹅 - 企鹅的博客 设每个像素的物理尺寸大小为 dx * dy (mm) ( 由于单个像素点投影在图像平面上是矩形而不是正方形,因此可能dx != dy), 图像平面上某点在成像平面坐标系中的坐标为(x, y),在像素坐标系中的坐标为(u, v),则二者满足如下关系:[即(x, y)→(u, v)] u = x / dx + u0 v = y / dy + v0 用齐次坐标与矩阵形式表示为: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将等式两边都乘以点Q(X,Y,Z)坐标中的Z可得: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 将摄像机坐标系中的(1)式代入上式可得: 则右边第一个矩阵和第二个矩阵的乘积亦为摄像机的内参数矩阵(单位为像素),相乘后可得: (2) 和(1)式相比,此内参数矩阵中f/dx, f/dy, cx/dx+u0, cy/dy+v0 的单位均为像素。令内参数矩阵为K,则上式可写成: 摄像机模型与标定 - 小企鹅 - 企鹅的博客 (3) 三.相机内参K(与棋盘所在空间的3D几何相关) 在计算机视觉中,摄像机内参数矩阵 其中 f 为摄像机的焦距,单位一般是mm;dx,dy 为像元尺寸;u0,v0 为图像中心。 fx = f/dx, fy = f/dy,分别称为x轴和y轴上的归一化焦距. 为更好的理解,举个实例: 现以NiKon D700相机为例进行求解其内参数矩阵: 就算大家身边没有这款相机也无所谓,可以在网上百度一下,很方便的就知道其一些参数—— 焦距 f = 35mm 最高分辨率:4256×2832 传感器尺寸:36.0×23.9 mm 根据以上定义可以有: u0= 4256/2 = 2128 v0= 2832/2 = 1416 dx = 36.0/4256 dy = 23.9/2832 fx = f/dx = 4137.8 fy = f/dy = 4147.3 分辨率可以从显示分辨率与图像分辨率两个方向来分类。 [1]显示分辨率(屏幕分辨率)是屏幕图像的精密度,是指显示器所能显示的像素有多少。由于屏幕上的点、线和面都是由像素组成的, 显示器可显示的像素越多,画面就越精细,同样的屏幕区域内能显示的信息也越多,所以分辨率是个非常重要的性能指标之一。 可以把整个图像想象成是一个大型的棋盘,而分辨率的表示方式就是所有经线和纬线交叉点的数目。 显示分辨率一定的情况下,显示屏越小图像越清晰,反之,显示屏大小固定时,显示分辨率越高图像越清晰。 [2]图像分辨率则是单位英寸中所包含的像素点数,其定义更趋近于分辨率本身的定义。 四.畸变参数(与点集如何畸变的2D几何相关。) 采用理想针孔模型,由于通过针孔的光线少,摄像机曝光太慢,在实际使用中均采用透镜,可以使图像生成迅速,但代价是引入了畸变。 有两种畸变对投影图像影响较大: 径向畸变和切向畸变。 1、径向畸变 对某些透镜,光线在远离透镜中心的地方比靠近中心的地方更加弯曲,产生“筒形”或“鱼眼”现象,称为径向畸变。 一般来讲,成像仪中心的径向畸变为0,越向边缘移动,畸变越严重。不过径向畸变可以通过下面的泰勒级数展开式来校正: xcorrected = x(1+k1r2+k2r4+k3r6) ycorrected = y(1+k1r2+k2r4+k3r6) 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 对于一般的摄像机校正,通常使用泰勒级数中的前两项k1和k2就够了;对畸变很大的摄像机,比如鱼眼透镜,可以使用第三径向畸变项k3 2、切向畸变 当成像仪被粘贴在摄像机的时候,会存在一定的误差,使得图像平面和透镜不完全平行,从而产生切向畸变。也就是说,如果一个矩形被投影到成像仪上时, 可能会变成一个梯形。切向畸变可以通过如下公式来校正: xcorrected = x + [ 2p1y + p2 (r2 + 2x2) ] ycorrected = y + [ 2p2x + p1 (r2 + 2y2) ] 这里(x, y)是畸变点在成像仪上的原始位置,r为该点距离成像仪中心的距离,(xcorrected ,ycorrected )是校正后的新位置。 五.摄像机的外参数 旋转向量(大小为1×3的矢量或旋转矩阵3×3)和平移向量(tx,ty,tz)。 旋转向量:旋转向量是旋转矩阵紧凑的变现形式,旋转向量为1×3的行矢量。 r就是旋转向量,旋转向量的方向是旋转轴 ,旋转向量的模为围绕旋转轴旋转的角度。 通过上面的公式,我们就可以求解出旋转矩阵R。同样的已知旋转矩阵,我们也可以通过下面的公式求解得到旋转向量: 。

最新推荐

recommend-type

基于深度强化学习的机器人运动控制

【基于深度强化学习的机器人运动控制】这篇论文深入探讨了如何利用深度强化学习来实现机器人的运动控制,尤其是在复杂环境中促进复杂行为的学习。强化学习的基本原理是通过简单的奖励信号来学习复杂的任务,但在实际...
recommend-type

MiniGui业务开发基础培训-htk

MiniGui业务开发基础培训-htk
recommend-type

com.harmonyos.exception.DiskReadWriteException(解决方案).md

鸿蒙开发中碰到的报错,问题已解决,写个文档记录一下这个问题及解决方案
recommend-type

BottleJS快速入门:演示JavaScript依赖注入优势

资源摘要信息:"BottleJS是一个轻量级的依赖项注入容器,用于JavaScript项目中,旨在减少导入依赖文件的数量并优化代码结构。该项目展示BottleJS在前后端的应用,并通过REST API演示其功能。" BottleJS Playgound 概述: BottleJS Playgound 是一个旨在演示如何在JavaScript项目中应用BottleJS的项目。BottleJS被描述为JavaScript世界中的Autofac,它是依赖项注入(DI)容器的一种实现,用于管理对象的创建和生命周期。 依赖项注入(DI)的基本概念: 依赖项注入是一种设计模式,允许将对象的依赖关系从其创建和维护的代码中分离出来。通过这种方式,对象不会直接负责创建或查找其依赖项,而是由外部容器(如BottleJS)来提供这些依赖项。这样做的好处是降低了模块间的耦合,提高了代码的可测试性和可维护性。 BottleJS 的主要特点: - 轻量级:BottleJS的设计目标是尽可能简洁,不引入不必要的复杂性。 - 易于使用:通过定义服务和依赖关系,BottleJS使得开发者能够轻松地管理大型项目中的依赖关系。 - 适合前后端:虽然BottleJS最初可能是为前端设计的,但它也适用于后端JavaScript项目,如Node.js应用程序。 项目结构说明: 该仓库的src目录下包含两个子目录:sans-bottle和bottle。 - sans-bottle目录展示了传统的方式,即直接导入依赖并手动协调各个部分之间的依赖关系。 - bottle目录则使用了BottleJS来管理依赖关系,其中bottle.js文件负责定义服务和依赖关系,为项目提供一个集中的依赖关系源。 REST API 端点演示: 为了演示BottleJS的功能,该项目实现了几个简单的REST API端点。 - GET /users:获取用户列表。 - GET /users/{id}:通过给定的ID(范围0-11)获取特定用户信息。 主要区别在用户路由文件: 该演示的亮点在于用户路由文件中,通过BottleJS实现依赖关系的注入,我们可以看到代码的组织和结构比传统方式更加清晰和简洁。 BottleJS 和其他依赖项注入容器的比较: - BottleJS相比其他依赖项注入容器如InversifyJS等,可能更轻量级,专注于提供基础的依赖项管理和注入功能。 - 它的设计更加直接,易于理解和使用,尤其适合小型至中型的项目。 - 对于需要高度解耦和模块化的大规模应用,可能需要考虑BottleJS以外的解决方案,以提供更多的功能和灵活性。 在JavaScript项目中应用依赖项注入的优势: - 可维护性:通过集中管理依赖关系,可以更容易地理解和修改应用的结构。 - 可测试性:依赖项的注入使得创建用于测试的mock依赖关系变得简单,从而方便单元测试的编写。 - 模块化:依赖项注入鼓励了更好的模块化实践,因为模块不需关心依赖的来源,只需负责实现其定义的接口。 - 解耦:模块之间的依赖关系被清晰地定义和管理,减少了直接耦合。 总结: BottleJS Playgound 项目提供了一个生动的案例,说明了如何在JavaScript项目中利用依赖项注入模式改善代码质量。通过该项目,开发者可以更深入地了解BottleJS的工作原理,以及如何将这一工具应用于自己的项目中,从而提高代码的可维护性、可测试性和模块化程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【版本控制】:R语言项目中Git与GitHub的高效应用

![【版本控制】:R语言项目中Git与GitHub的高效应用](https://opengraph.githubassets.com/2abf032294b9f2a415ddea58f5fde6fcb018b57c719dfc371bf792c251943984/isaacs/github/issues/37) # 1. 版本控制与R语言的融合 在信息技术飞速发展的今天,版本控制已成为软件开发和数据分析中不可或缺的环节。特别是对于数据科学的主流语言R语言,版本控制不仅帮助我们追踪数据处理的历史,还加强了代码共享与协作开发的效率。R语言与版本控制系统的融合,特别是与Git的结合使用,为R语言项
recommend-type

RT-DETR如何实现在实时目标检测中既保持精度又降低计算成本?请提供其技术实现的详细说明。

为了理解RT-DETR如何在实时目标检测中保持精度并降低计算成本,我们必须深入研究其架构优化和技术细节。RT-DETR通过融合CNN与Transformer的优势,提出了一种混合编码器结构,这种结构采用了尺度内交互(AIFI)和跨尺度融合(CCFM)策略来提取和融合多尺度图像特征,这些特征能够提供丰富的视觉上下文信息,从而提升了模型的检测精度。 参考资源链接:[RT-DETR:实时目标检测中的新胜者](https://wenku.csdn.net/doc/1ehyj4a8z2?spm=1055.2569.3001.10343) 在编码器阶段,RT-DETR使用主干网络提取图像特征,然后通过
recommend-type

vConsole插件使用教程:输出与复制日志文件

资源摘要信息:"vconsole-outputlog-plugin是一个JavaScript插件,它能够在vConsole环境中输出日志文件,并且支持将日志复制到剪贴板或下载。vConsole是一个轻量级、可扩展的前端控制台,通常用于移动端网页的调试。该插件的安装依赖于npm,即Node.js的包管理工具。安装完成后,通过引入vConsole和vConsoleOutputLogsPlugin来初始化插件,之后即可通过vConsole输出的console打印信息进行日志的复制或下载操作。这在进行移动端调试时特别有用,可以帮助开发者快速获取和分享调试信息。" 知识点详细说明: 1. vConsole环境: vConsole是一个专为移动设备设计的前端调试工具。它模拟了桌面浏览器的控制台,并添加了网络请求、元素选择、存储查看等功能。vConsole可以独立于原生控制台使用,提供了一个更为便捷的方式来监控和调试Web页面。 2. 日志输出插件: vconsole-outputlog-plugin是一个扩展插件,它增强了vConsole的功能,使得开发者不仅能够在vConsole中查看日志,还能将这些日志方便地输出、复制和下载。这样的功能在移动设备上尤为有用,因为移动设备的控制台通常不易于使用。 3. npm安装: npm(Node Package Manager)是Node.js的包管理器,它允许用户下载、安装、管理各种Node.js的包或库。通过npm可以轻松地安装vconsole-outputlog-plugin插件,只需在命令行执行`npm install vconsole-outputlog-plugin`即可。 4. 插件引入和使用: - 首先创建一个vConsole实例对象。 - 然后创建vConsoleOutputLogsPlugin对象,它需要一个vConsole实例作为参数。 - 使用vConsole对象的实例,就可以在其中执行console命令,将日志信息输出到vConsole中。 - 插件随后能够捕获这些日志信息,并提供复制到剪贴板或下载的功能。 5. 日志操作: - 复制到剪贴板:在vConsole界面中,通常会有“复制”按钮,点击即可将日志信息复制到剪贴板,开发者可以粘贴到其他地方进行进一步分析或分享。 - 下载日志文件:在某些情况下,可能需要将日志信息保存为文件,以便离线查看或作为报告的一部分。vconsole-outputlog-plugin提供了将日志保存为文件并下载的功能。 6. JavaScript标签: 该插件是使用JavaScript编写的,因此它与JavaScript紧密相关。JavaScript是一种脚本语言,广泛用于网页的交互式内容开发。此插件的开发和使用都需要一定的JavaScript知识,包括对ES6(ECMAScript 2015)版本规范的理解和应用。 7. 压缩包子文件: vconsole-outputlog-plugin-main文件名可能是指该插件的压缩包或分发版本,通常包含插件的源代码、文档和可能的配置文件。开发者可以通过该文件名在项目中正确地引用和使用插件。 通过掌握这些知识点,开发者可以有效地在vConsole环境中使用vconsole-outputlog-plugin插件,提高移动端网页的调试效率和体验。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【自然语言处理】:R语言文本挖掘与情感分析入门指南

![【自然语言处理】:R语言文本挖掘与情感分析入门指南](https://wisdomml.in/wp-content/uploads/2022/08/tokenizer-1024x512.jpg) # 1. 自然语言处理和R语言基础 自然语言处理(NLP)是计算机科学和人工智能领域的一个分支,旨在让计算机能够理解人类语言。随着大数据时代的到来,NLP在文本分析、信息检索、语音识别等方面的应用变得越来越广泛。R语言作为一种开源的统计编程语言,具有强大的数据处理和可视化功能,它在NLP领域的应用也越来越受到重视。本章将带领读者了解自然语言处理的基础知识,以及R语言在处理语言数据时的基本语法和功