c++如何编写数独游戏,举个例子

时间: 2023-09-22 16:06:51 浏览: 143
RAR

c++编写的数独游戏

### 回答1: 编写数独游戏的基本原理是使用给定的数字填充9x9格的空格,使每行、每列和每个3x3的小格子中都含有1到9的数字,但是没有重复的数字。举个例子,给定如下数独:| 8 | | | | ------------------------ | | | 3 | 6 | | ------------------------ | | | | | | ------------------------ | | 7 | | 9 |解决方案可能是:| 8 | 1 | 2 | | ------------------------ | | 9 | 3 | 6 | | ------------------------ | | 4 | 5 | 7 | | ------------------------ | | 7 | 8 | 9 | ### 回答2: 数独游戏是一种逻辑推理游戏,玩家需要将1~9的数字填入9×9的格子中,每一行、每一列以及每一个3x3的九宫格内都不能有重复的数字。 编写数独游戏的代码,可以分为几个步骤。 首先,创建一个9×9的二维数组来表示数独的初始状态。初始状态即为一部分已经填入数字的格子,其余格子为空。 然后,填入一些已知的数字,这些数字遵循数独规则。可以通过直接在代码中指定已知的数字,或者通过随机生成一些数字来模拟数独谜题。 接下来是编写验证数独解答的函数。该函数用于检查玩家填入的数字是否符合数独规则。验证过程包括检查每一行、每一列以及每一个3x3的九宫格内是否有重复的数字。 最后,编写游戏主循环。在每一轮循环中,输出当前的数独状态并等待玩家的输入。玩家可以选择填入数字或者退出游戏。通过调用验证函数来检查玩家填入的数字是否正确。如果全部格子都被正确填满,则游戏结束。 举个例子,以下是一个简化的数独游戏代码示例: ``` # 创建数独初始状态 board = [ [5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9] ] # 验证数独解答的函数 def validate(board): # 验证行 for row in board: if len(set(row)) != len(row): return False # 验证列 for col in range(9): if len(set([board[row][col] for row in range(9)])) != 9: return False # 验证九宫格 for i in range(0, 9, 3): for j in range(0, 9, 3): square = [board[row][col] for row in range(i, i + 3) for col in range(j, j + 3)] if len(set(square)) != 9: return False return True # 游戏主循环 while True: # 输出当前数独状态 for row in board: print(row) # 等待玩家输入 row = int(input("请输入要填入数字的行号:")) col = int(input("请输入要填入数字的列号:")) num = int(input("请输入要填入的数字:")) # 填入玩家输入的数字 board[row][col] = num # 验证数独解答是否正确 if validate(board): print("恭喜,数独解答正确!") break else: print("数独解答错误,请继续填入数字或退出游戏。") ``` 这个例子展示了一个基本的数独游戏,玩家可以通过输入坐标和数字来填入数独格子,并会实时验证解答的正确性。数独的初始状态也通过二维数组的形式给出。 ### 回答3: 编写数独游戏的关键是创建一个包含9x9的矩阵作为数独棋盘,并在合适的位置放置数字。下面是一个简单的例子: 首先,定义一个9x9的二维数组作为数独棋盘: int[][] sudokuBoard = new int[9][9]; 然后,我们可以使用以下步骤来填充数独: 1. 创建一个函数来检查给定行、列和子区域是否已经有相同的数字。这种函数可以根据数独规则,遍历相关区域并检查是否有重复数字。 2. 创建一个递归函数来填充数独的空白位置。该函数可以从棋盘的左上角开始,找到一个空位置,并尝试填充1到9的数字。然后使用递归调用来填充下一个空位置,直到所有位置都填满。在填充之前,需要先进行检查,确保填入的数字符合数独规则。 3. 当棋盘填充完毕时,数独游戏就完成了。 下面是一个数独游戏的填充示例: sudokuBoard[0][0] = 5; // 填充第一行第一列的位置为5 sudokuBoard[2][1] = 3; // 填充第三行第二列的位置为3 sudokuBoard[4][2] = 7; // 填充第五行第三列的位置为7 sudokuBoard[6][3] = 1; // 填充第七行第四列的位置为1 // ... 依此类推填充剩下的位置 这只是一个很小的数独游戏填充示例,实际的数独游戏需要更复杂的算法来保证解的唯一性和随机性。编写数独游戏需要一些熟悉编程语言和算法的知识,但一旦掌握了相关技术,就可以轻松编写出各种不同难度的数独游戏。
阅读全文

相关推荐

最新推荐

recommend-type

Java基于springboot+vue的校园自助洗衣服务管理系统的设计与实现.rar

【基于Springboot+Vue的设计与实现】高分通过项目,已获导师指导。 本项目是一套基于Springboot+Vue的管理系统,主要针对计算机相关专业的正在做毕设的学生和需要项目实战练习的Java学习者。也可作为课程设计、期末大作业 包含:项目源码、数据库脚本、开发说明文档、部署视频、代码讲解视频、全套软件等,该项目可以直接作为毕设使用。 项目都经过严格调试,确保可以运行! 环境说明: 开发语言:Java 框架:springboot,mybatis JDK版本:JDK1.8 数据库:mysql 5.7数据库工具:Navicat11开发软件:eclipse/idea Maven包:Maven3.3
recommend-type

广义表的基本操作与高级功能

这份资料详细介绍了广义表(Generalized List)这一重要的数据结构。广义表是一种递归数据结构,其元素可以是原子(基本数据类型,如数字、字符)或者子表(另一个广义表),具有灵活性和递归性的特点。 资料主要包含七个部分:基本概念介绍、表示方法、存储结构、基本操作、高级操作、应用场景和优化策略。在基本操作部分,详细讲解了创建、遍历、插入、删除等功能的具体实现,每个操作都配有完整的C语言代码示例。在应用场景部分,展示了广义表在表示嵌套表达式、树结构和多层嵌套数据等实际场景中的应用。针对实现过程中可能遇到的内存管理、递归效率、栈溢出等问题,资料也提供了相应的优化策略和解决方案。
recommend-type

舷侧和端射天线阵列辐射方向图 matlab代码.rar

1.版本:matlab2014/2019a/2024a 2.附赠案例数据可直接运行matlab程序。 3.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。 4.适用对象:计算机,电子信息工程、数学等专业的大学生课程设计、期末大作业和毕业设计。
recommend-type

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,前端和 Ascend 处理器之间的连接链接模块

图引擎模块(GE)是MindSpore的一个子模块,其代码由C++实现,位于前端模块ME和底层硬件之间,起到承接作用。图引擎模块以ME下发的图作为输入,然后进行一系列的深度图优化操作,最后输出一张可以在底层硬件上高效运行的图。GE针对昇腾AI处理器的硬件结构特点,做了特定的优化工作,以此来充分发挥出昇腾AI处理器的强大算力。在进行模型训练/推理时,GE会被自动调用而用户并不感知。GE主要由GE API和GE Core两部分组成
recommend-type

校园数字化图书馆系统 JAVA毕业设计 源码+数据库+论文+启动教程(SpringBoot+Vue.JS).zip

校园数字化图书馆系统 JAVA毕业设计 源码+数据库+论文+启动教程(SpringBoot+Vue.JS) 项目启动教程:https://www.bilibili.com/video/BV1jKDjYrEz1
recommend-type

平尾装配工作平台运输支撑系统设计与应用

资源摘要信息:"该压缩包文件名为‘行业分类-设备装置-用于平尾装配工作平台的运输支撑系统.zip’,虽然没有提供具体的标签信息,但通过文件标题可以推断出其内容涉及的是航空或者相关重工业领域内的设备装置。从标题来看,该文件集中讲述的是有关平尾装配工作平台的运输支撑系统,这是一种专门用于支撑和运输飞机平尾装配的特殊设备。 平尾,即水平尾翼,是飞机尾部的一个关键部件,它对于飞机的稳定性和控制性起到至关重要的作用。平尾的装配工作通常需要在一个特定的平台上进行,这个平台不仅要保证装配过程中平尾的稳定,还需要适应平尾的搬运和运输。因此,设计出一个合适的运输支撑系统对于提高装配效率和保障装配质量至关重要。 从‘用于平尾装配工作平台的运输支撑系统.pdf’这一文件名称可以推断,该PDF文档应该是详细介绍这种支撑系统的构造、工作原理、使用方法以及其在平尾装配工作中的应用。文档可能包括以下内容: 1. 支撑系统的设计理念:介绍支撑系统设计的基本出发点,如便于操作、稳定性高、强度大、适应性强等。可能涉及的工程学原理、材料学选择和整体结构布局等内容。 2. 结构组件介绍:详细介绍支撑系统的各个组成部分,包括支撑框架、稳定装置、传动机构、导向装置、固定装置等。对于每一个部件的功能、材料构成、制造工艺、耐腐蚀性以及与其他部件的连接方式等都会有详细的描述。 3. 工作原理和操作流程:解释运输支撑系统是如何在装配过程中起到支撑作用的,包括如何调整支撑点以适应不同重量和尺寸的平尾,以及如何进行运输和对接。操作流程部分可能会包含操作步骤、安全措施、维护保养等。 4. 应用案例分析:可能包含实际操作中遇到的问题和解决方案,或是对不同机型平尾装配过程的支撑系统应用案例的详细描述,以此展示系统的实用性和适应性。 5. 技术参数和性能指标:列出支撑系统的具体技术参数,如载重能力、尺寸规格、工作范围、可调节范围、耐用性和可靠性指标等,以供参考和评估。 6. 安全和维护指南:对于支撑系统的使用安全提供指导,包括操作安全、应急处理、日常维护、定期检查和故障排除等内容。 该支撑系统作为专门针对平尾装配而设计的设备,对于飞机制造企业来说,掌握其详细信息是提高生产效率和保障产品质量的重要一环。同时,这种支撑系统的设计和应用也体现了现代工业在专用设备制造方面追求高效、安全和精确的趋势。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB遗传算法探索:寻找随机性与确定性的平衡艺术

![MATLAB多种群遗传算法优化](https://img-blog.csdnimg.cn/39452a76c45b4193b4d88d1be16b01f1.png) # 1. 遗传算法的基本概念与起源 遗传算法(Genetic Algorithm, GA)是一种模拟自然选择和遗传学机制的搜索优化算法。起源于20世纪60年代末至70年代初,由John Holland及其学生和同事们在研究自适应系统时首次提出,其理论基础受到生物进化论的启发。遗传算法通过编码一个潜在解决方案的“基因”,构造初始种群,并通过选择、交叉(杂交)和变异等操作模拟生物进化过程,以迭代的方式不断优化和筛选出最适应环境的
recommend-type

如何在S7-200 SMART PLC中使用MB_Client指令实现Modbus TCP通信?请详细解释从连接建立到数据交换的完整步骤。

为了有效地掌握S7-200 SMART PLC中的MB_Client指令,以便实现Modbus TCP通信,建议参考《S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解》。本教程将引导您了解从连接建立到数据交换的整个过程,并详细解释每个步骤中的关键点。 参考资源链接:[S7-200 SMART Modbus TCP教程:MB_Client指令与功能码详解](https://wenku.csdn.net/doc/119yes2jcm?spm=1055.2569.3001.10343) 首先,确保您的S7-200 SMART CPU支持开放式用户通
recommend-type

MAX-MIN Ant System:用MATLAB解决旅行商问题

资源摘要信息:"Solve TSP by MMAS: Using MAX-MIN Ant System to solve Traveling Salesman Problem - matlab开发" 本资源为解决经典的旅行商问题(Traveling Salesman Problem, TSP)提供了一种基于蚁群算法(Ant Colony Optimization, ACO)的MAX-MIN蚁群系统(MAX-MIN Ant System, MMAS)的Matlab实现。旅行商问题是一个典型的优化问题,要求找到一条最短的路径,让旅行商访问每一个城市一次并返回起点。这个问题属于NP-hard问题,随着城市数量的增加,寻找最优解的难度急剧增加。 MAX-MIN Ant System是一种改进的蚁群优化算法,它在基本的蚁群算法的基础上,对信息素的更新规则进行了改进,以期避免过早收敛和局部最优的问题。MMAS算法通过限制信息素的上下界来确保算法的探索能力和避免过早收敛,它在某些情况下比经典的蚁群系统(Ant System, AS)和带有局部搜索的蚁群系统(Ant Colony System, ACS)更为有效。 在本Matlab实现中,用户可以通过调用ACO函数并传入一个TSP问题文件(例如"filename.tsp")来运行MMAS算法。该问题文件可以是任意的对称或非对称TSP实例,用户可以从特定的网站下载多种标准TSP问题实例,以供测试和研究使用。 使用此资源的用户需要注意,虽然该Matlab代码可以免费用于个人学习和研究目的,但若要用于商业用途,则需要联系作者获取相应的许可。作者的电子邮件地址为***。 此外,压缩包文件名为"MAX-MIN%20Ant%20System.zip",该压缩包包含Matlab代码文件和可能的示例数据文件。用户在使用之前需要将压缩包解压,并将文件放置在Matlab的适当工作目录中。 为了更好地理解和应用该资源,用户应当对蚁群优化算法有初步了解,尤其是对MAX-MIN蚁群系统的基本原理和运行机制有所掌握。此外,熟悉Matlab编程环境和拥有一定的编程经验将有助于用户根据个人需求修改和扩展算法。 在实际应用中,用户可以根据问题规模调整MMAS算法的参数,如蚂蚁数量、信息素蒸发率、信息素增量等,以获得最优的求解效果。此外,也可以结合其他启发式或元启发式算法,如遗传算法、模拟退火等,来进一步提高算法的性能。 总之,本资源为TSP问题的求解提供了一种有效的算法框架,且Matlab作为编程工具的易用性和强大的计算能力,使得该资源成为算法研究人员和工程技术人员的有力工具。通过本资源的应用,用户将能够深入探索并实现蚁群优化算法在实际问题中的应用,为解决复杂的优化问题提供一种新的思路和方法。