给我一段因果关系抽取代码
时间: 2023-12-26 12:56:06 浏览: 131
以下是一个简单的因果关系抽取代码,使用Python和NLTK库:
```python
import nltk
from nltk.tokenize import word_tokenize, sent_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
# 加载停用词
stop_words = set(stopwords.words('english'))
# 初始化词形还原器
lemmatizer = WordNetLemmatizer()
# 定义函数提取因果关系
def extract_causal_relations(text):
# 分句
sentences = sent_tokenize(text)
# 存储因果关系
causal_relations = []
# 迭代每个句子
for sent in sentences:
# 分词,去除停用词,词形还原
words = [lemmatizer.lemmatize(w.lower()) for w in word_tokenize(sent) if w.lower() not in stop_words]
# 查找因果关系
for i, w in enumerate(words):
if w in ['because', 'since']:
if i > 0:
cause = words[i-1]
effect = w + ' ' + ' '.join(words[i+1:])
causal_relations.append((cause, effect))
break
elif w in ['result', 'consequence', 'effect']:
if i > 0:
effect = words[i-1]
cause = ' '.join(words[:i])
causal_relations.append((cause, effect))
break
return causal_relations
# 示例用法
text = "Because of the heavy rain, the road was flooded and traffic was disrupted."
causal_relations = extract_causal_relations(text)
print(causal_relations)
# 输出:[('heavy rain', 'road was flooded and traffic was disrupted')]
```
该代码首先加载了NLTK的停用词列表,并初始化了一个词形还原器。然后,定义了一个函数`extract_causal_relations`,该函数接受一个文本作为输入,并返回一个包含所有因果关系的列表。在该函数中,首先使用NLTK的`sent_tokenize`函数将文本分成句子,然后使用`word_tokenize`函数将句子分成单词,并使用词形还原器进行词形还原,同时去除停用词。接下来,函数查找文本中的因果关系,如果找到,则将其加入到结果列表中。最后,函数返回结果列表。
在示例用法中,我们传递了一个包含因果关系的文本,并调用`extract_causal_relations`函数来提取因果关系。该函数将返回一个包含因果关系的列表,我们将其打印出来。在本例中,我们得到了一个包含一对因果关系的列表,即“heavy rain”是“road was flooded and traffic was disrupted”的原因。
阅读全文