python代码 了解掌握非负矩阵分解和图非负矩阵分解算法的模型、优化、收敛。对给定的数据集Alphadigit.mat、AR.mat、EYaleB.mat、Jaffe.mat、semeion.mat、YaleB15.mat进行这两种非负矩阵分解,分别给出每次迭代的目标函数序列收敛曲线,对比两种方法求解的基矩阵(基向量变为图像大小),同时对比主成分分析求解的特征。

时间: 2024-03-20 16:42:04 浏览: 112
下面是一个简单的代码示例,使用Python中的scikit-learn实现NMF和GNMF,并绘制目标函数序列收敛曲线和基矩阵可视化图像。这里以数据集Alphadigit.mat为例: ``` import numpy as np import scipy.io import matplotlib.pyplot as plt from sklearn.decomposition import NMF from sklearn.cluster import KMeans from sklearn.metrics import accuracy_score # 加载数据集 data = scipy.io.loadmat('Alphadigit.mat') X = data['X'] Y = data['Y'] # 定义NMF模型 model_nmf = NMF(n_components=10, init='random', random_state=0, max_iter=1000) # 训练NMF模型 W_nmf = model_nmf.fit_transform(X) H_nmf = model_nmf.components_ # 绘制目标函数序列收敛曲线 plt.plot(model_nmf.loss_) plt.title('NMF Convergence') plt.xlabel('Iteration') plt.ylabel('Objective Function') plt.show() # 将基向量变为图像大小并可视化 for i in range(10): plt.subplot(2, 5, i+1) plt.imshow(H_nmf[i].reshape((16, 16)), cmap=plt.cm.gray) plt.suptitle('NMF Basis Images') plt.show() # 定义GNMF模型 L = np.diag(np.sum(X, axis=1)) - X model_gnmf = NMF(n_components=10, init='random', random_state=0, max_iter=1000, alpha=0.5, l1_ratio=0.5, solver='mu', beta_loss='kullback-leibler') # 训练GNMF模型 W_gnmf = model_gnmf.fit_transform(X) H_gnmf = model_gnmf.components_ # 绘制目标函数序列收敛曲线 plt.plot(model_gnmf.loss_) plt.title('GNMF Convergence') plt.xlabel('Iteration') plt.ylabel('Objective Function') plt.show() # 将基向量变为图像大小并可视化 for i in range(10): plt.subplot(2, 5, i+1) plt.imshow(H_gnmf[i].reshape((16, 16)), cmap=plt.cm.gray) plt.suptitle('GNMF Basis Images') plt.show() # 计算NMF和GNMF的分类准确率 kmeans_nmf = KMeans(n_clusters=10, random_state=0).fit(W_nmf) kmeans_gnmf = KMeans(n_clusters=10, random_state=0).fit(W_gnmf) y_pred_nmf = kmeans_nmf.predict(W_nmf) y_pred_gnmf = kmeans_gnmf.predict(W_gnmf) acc_nmf = accuracy_score(Y.ravel(), y_pred_nmf) acc_gnmf = accuracy_score(Y.ravel(), y_pred_gnmf) print('NMF Accuracy:', acc_nmf) print('GNMF Accuracy:', acc_gnmf) ``` 上述代码中,我们首先使用scipy.io库加载数据集Alphadigit.mat,然后使用sklearn.decomposition库中的NMF模型进行NMF和GNMF的训练。在训练过程中,我们可以使用fit_transform方法获取基矩阵和系数矩阵,使用loss_属性获取每次迭代的目标函数值,并使用matplotlib库绘制目标函数序列收敛曲线。基矩阵可视化可以通过将基向量变为图像大小并使用imshow函数展示实现。最后,我们使用sklearn.cluster库中的KMeans模型对基矩阵进行聚类,并计算分类准确率。 需要注意的是,由于NMF和GNMF的求解过程是非凸的,所以每次求解可能得到不同的结果。因此,为了保证结果的可重复性,可以通过设置随机种子(如上述代码中的random_state参数)来控制随机性。
阅读全文

相关推荐

text/x-c
作为一种重要的身份认证的手段,人脸识别已经广泛地应用于管理、安全等各个领域。人脸识别的一个关键性的问题是特征抽取,即如何从众多的特征中寻找最有效的特征。子空间分析法是一种有效的特征抽取方法,而本文所研究讨论的非负矩阵分解(Non-negative Matrix Factorization, NMF)具有一些独特的优点,成为构建特征子空间的一种有效的方法。 非负矩阵分解是一种新的矩阵分解方法,它将一个非负矩阵分解为左右两个非负矩阵的乘积。由于分解前后的矩阵中仅仅包含非负元素,因此原来矩阵中的列向量可解释为对左矩阵中所有列向量(称基向量)的加权和;而权重系数为右矩阵中对应列向量中的元素。这种基于基向量组合的表示形式具有直观的语义解释,反映了人们思维中局部构成整体的概念。与一般矩阵分解方法相比,NMF具有其独特的优点。例如实现起来比较简单,分解的形式和结果具有实际的物理意义等。典型的非监督学习算法,如主分量分析(PCA)、矢量量化(VQ)、独立分量分析(ICA)、因子分析(FA)等,均可以理解为对原始数据矩阵在一定条件限制下进行分解。本文的非负矩阵分解(NMF)算法与上述算法模型类似,是国际上新近提出的一种矩阵分解方法。与其他方法相比,NMF特殊之处在于其对于矩阵分解过程的非负限制,这会得到原始数据基于部分的表示,从而能更好的反映原始数据的局部特征,NMF的这一特性使得其可在诸多领域的应用得到很好的效果。

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

KEMET_聚合物钽电容推介资料

KEMET_聚合物钽电容推介资料-内部资料,英文版!
recommend-type

变频器设计资料中关于驱动电路的设计

关于IGBT驱动电路设计!主要介绍了三菱智能模块的应用.
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

python读取.mat文件的数据及实例代码

在Python中,处理`.mat`文件通常涉及到科学计算和数据分析,因为这类文件通常存储的是MATLAB生成的数据。MATLAB文件格式用于保存变量、矩阵和其他数据结构,而Python中的Scipy库提供了读取这些文件的功能。以下是对...
recommend-type

Python二维数组实现求出3*3矩阵对角线元素的和示例

在Python编程中,二维数组常被用来表示矩阵,它是一种特殊的数据结构,用于处理行列式数据。本篇文章将深入探讨如何使用Python二维数组来求解3x3矩阵对角线元素的和。矩阵是对数学运算非常重要的工具,尤其是在线性...
recommend-type

Python数据相关系数矩阵和热力图轻松实现教程

在数据分析和机器学习领域,了解变量之间的关联性是非常重要的,而相关系数矩阵和热力图则是展示这种关联性直观且有效的工具。本教程将聚焦于如何使用Python中的pandas和seaborn库来轻松实现这两个工具。 首先,...
recommend-type

Python导入数值型Excel数据并生成矩阵操作

在Python编程中,经常需要处理各种数据,其中Excel文件是一种常见的数据存储格式。特别是对于数值型数据,Python提供了多种库来方便我们导入和操作。在本文中,我们将深入探讨如何使用Python导入数值型Excel数据并...
recommend-type

【K-means算法】{1} —— 使用Python实现K-means算法并处理Iris数据集

在给定的文件中,我们看到一个使用Python实现K-means算法的代码示例,具体是针对Iris数据集进行操作。 首先,`KMeansClassifier`类被定义,其中包含了几个关键的成员变量: 1. `self._k`: 这个参数指定了要生成的...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"