请解释这段代码:dynamic_param['baseinertia'] = np.clip(np.ones(3)+1*param[3:6],np.array([0.1]*3),np.array([3]*3))

时间: 2024-06-05 13:08:43 浏览: 24
这段代码的作用是将一个长度为6的一维数组param[3:6],转换成一个长度为3的三维数组dynamic_param['baseinertia'],并将其中的每一个元素限制在[0.1, 3]的范围内。具体实现是通过numpy中的clip方法实现。其中,np.ones(3)用于创建一个长度为3的由1组成的一维数组,1*param[3:6]用于将param[3:6]中的每一个元素乘以1,得到一个新的一维数组,作为新数组dynamic_param['baseinertia']的值。np.array([0.1]*3)和np.array([3]*3)用于分别创建长度为3的一维数组,每个元素都是0.1和3,用于和新数组中的元素逐一比较,并限制其范围。最后得到的dynamic_param['baseinertia']是一个三维数组,其中每个元素都在[0.1, 3]的范围内。
相关问题

解释matlab这段代码:for i = 1:N-1 fi_z = param.ampli_u*sin(param.omega_u*t+(i-1)*param.delta_u); dfi_z = param.omega_u*param.ampli_u*cos(param.omega_u*t+(i-1)*param.delta_u); ddfi_z = -param.omega_u*param.omega_u*param.ampli_u*sin(param.omega_u*t+(i-1)*param.delta_u);

这段代码使用了一个 for 循环,循环的次数为 N-1 次。在循环的每一次中,代码计算了三个变量 fi_z、dfi_z、ddfi_z 的值。这些变量的值分别计算如下: - fi_z 的值:使用了参数 param 中的 ampli_u、omega_u 和 delta_u,以及变量 t 和 i 的值计算。具体计算方式为 param.ampli_u*sin(param.omega_u*t+(i-1)*param.delta_u),即对于每个 i,计算 sin(param.omega_u*t+(i-1)*param.delta_u),并乘以 param.ampli_u。 - dfi_z 的值:使用了参数 param 中的 omega_u、ampli_u 和 delta_u,以及变量 t 和 i 的值计算。具体计算方式为 param.omega_u*param.ampli_u*cos(param.omega_u*t+(i-1)*param.delta_u),即对于每个 i,计算 cos(param.omega_u*t+(i-1)*param.delta_u),并乘以 param.omega_u*param.ampli_u。 - ddfi_z 的值:使用了参数 param 中的 omega_u 和 ampli_u,以及变量 t 和 i 的值计算。具体计算方式为 -param.omega_u*param.omega_u*param.ampli_u*sin(param.omega_u*t+(i-1)*param.delta_u),即对于每个 i,计算 sin(param.omega_u*t+(i-1)*param.delta_u),并乘以 -param.omega_u*param.omega_u*param.ampli_u。 这段代码的作用可能是计算某个系统的振动或波动过程中,各个时刻的振幅、速度和加速度等参数的值。其中,i 表示时间序列中的不同时刻,N 表示时间序列的总长度。

翻译代码: def mutate(self, net): mutated_net = deepcopy(net) for param in mutated_net.parameters(): if np.random.rand() < self.mutation_rate: param.data += torch.randn(param.data.shape) return mutated_net

这段代码的功能是进行神经网络的变异操作。具体实现是:首先对神经网络进行深拷贝,得到一个变异后的网络;然后对变异后网络中的参数进行遍历,若随机生成的一个0到1之间的数小于设定的变异率,则对该参数进行变异操作;最后返回变异后的网络。 代码中的注释翻译如下: ```python # 定义变异方法,输入参数为神经网络net def mutate(self, net): # 进行深拷贝,得到一个变异后的网络 mutated_net = deepcopy(net) # 遍历变异后网络中的所有参数 for param in mutated_net.parameters(): # 若随机生成的0到1之间的数小于变异率 if np.random.rand() < self.mutation_rate: # 对该参数进行变异操作,即加上一个随机数 param.data += torch.randn(param.data.shape) # 返回变异后的网络 return mutated_net ```

相关推荐

解释一下这段代码 def add_seq_to_prefix_tree(self, root_node, cluster: LogCluster): token_count = len(cluster.log_template_tokens) token_count_str = str(token_count) if token_count_str not in root_node.key_to_child_node: first_layer_node = Node() root_node.key_to_child_node[token_count_str] = first_layer_node else: first_layer_node = root_node.key_to_child_node[token_count_str] cur_node = first_layer_node if token_count == 0: cur_node.cluster_ids = [cluster.cluster_id] return current_depth = 1 for token in cluster.log_template_tokens: if current_depth >= self.max_node_depth or current_depth >= token_count: new_cluster_ids = [] for cluster_id in cur_node.cluster_ids: if cluster_id in self.id_to_cluster: new_cluster_ids.append(cluster_id) new_cluster_ids.append(cluster.cluster_id) cur_node.cluster_ids = new_cluster_ids break if token not in cur_node.key_to_child_node: if self.parametrize_numeric_tokens and self.has_numbers(token): if self.param_str not in cur_node.key_to_child_node: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if self.param_str in cur_node.key_to_child_node: if len(cur_node.key_to_child_node) < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: if len(cur_node.key_to_child_node) + 1 < self.max_children: new_node = Node() cur_node.key_to_child_node[token] = new_node cur_node = new_node elif len(cur_node.key_to_child_node) + 1 == self.max_children: new_node = Node() cur_node.key_to_child_node[self.param_str] = new_node cur_node = new_node else: cur_node = cur_node.key_to_child_node[self.param_str] else: cur_node = cur_node.key_to_child_node[token] current_depth += 1

代码解释并给每行代码添加注释:class CosineAnnealingWarmbootingLR: def __init__(self, optimizer, epochs=0, eta_min=0.05, steps=[], step_scale=0.8, lf=None, batchs=0, warmup_epoch=0, epoch_scale=1.0): self.warmup_iters = batchs * warmup_epoch self.optimizer = optimizer self.eta_min = eta_min self.iters = -1 self.iters_batch = -1 self.base_lr = [group['lr'] for group in optimizer.param_groups] self.step_scale = step_scale steps.sort() self.steps = [warmup_epoch] + [i for i in steps if (i < epochs and i > warmup_epoch)] + [epochs] self.gap = 0 self.last_epoch = 0 self.lf = lf self.epoch_scale = epoch_scale for group in optimizer.param_groups: group.setdefault('initial_lr', group['lr']) def step(self, external_iter = None): self.iters += 1 if external_iter is not None: self.iters = external_iter iters = self.iters + self.last_epoch scale = 1.0 for i in range(len(self.steps)-1): if (iters <= self.steps[i+1]): self.gap = self.steps[i+1] - self.steps[i] iters = iters - self.steps[i] if i != len(self.steps)-2: self.gap += self.epoch_scale break scale *= self.step_scale if self.lf is None: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * ((((1 + math.cos(iters * math.pi / self.gap)) / 2) ** 1.0) * (1.0 - self.eta_min) + self.eta_min) else: for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = scale * lr * self.lf(iters, self.gap) return self.optimizer.param_groups[0]['lr'] def step_batch(self): self.iters_batch += 1 if self.iters_batch < self.warmup_iters: rate = self.iters_batch / self.warmup_iters for group, lr in zip(self.optimizer.param_groups, self.base_lr): group['lr'] = lr * rate return self.optimizer.param_groups[0]['lr'] else: return None

import pyntcloud from scipy.spatial import cKDTree import numpy as np def pass_through(cloud, limit_min=-10, limit_max=10, filter_value_name="z"): """ 直通滤波 :param cloud:输入点云 :param limit_min: 滤波条件的最小值 :param limit_max: 滤波条件的最大值 :param filter_value_name: 滤波字段(x or y or z) :return: 位于[limit_min,limit_max]范围的点云 """ points = np.asarray(cloud.points) if filter_value_name == "x": ind = np.where((points[:, 0] >= limit_min) & (points[:, 0] <= limit_max))[0] x_cloud = pcd.select_by_index(ind) return x_cloud elif filter_value_name == "y": ind = np.where((points[:, 1] >= limit_min) & (points[:, 1] <= limit_max))[0] y_cloud = cloud.select_by_index(ind) return y_cloud elif filter_value_name == "z": ind = np.where((points[:, 2] >= limit_min) & (points[:, 2] <= limit_max))[0] z_cloud = pcd.select_by_index(ind) return z_cloud # -------------------读取点云数据并可视化------------------------ # 读取原始点云数据 cloud_before=pyntcloud.PyntCloud.from_file("./data/pcd/000000.pcd") # 进行点云下采样/滤波操作 # 假设得到了处理后的点云(下采样或滤波后) pcd = o3d.io.read_point_cloud("./data/pcd/000000.pcd") filtered_cloud = pass_through(pcd, limit_min=-10, limit_max=10, filter_value_name="x") # 获得原始点云和处理后的点云的坐标值 points_before = cloud_before.points.values points_after = filtered_cloud.points.values # 使用KD-Tree将两组点云数据匹配对应,求解最近邻距离 kdtree_before = cKDTree(points_before) distances, _ = kdtree_before.query(points_after) # 计算平均距离误差 ade = np.mean(distances) print("滤波前后的点云平均距离误差为:", ade) o3d.visualization.draw_geometries([filtered_cloud], window_name="直通滤波", width=1024, height=768, left=50, top=50, mesh_show_back_face=False) # 创建一个窗口,设置窗口大小为800x600 vis = o3d.visualization.Visualizer() vis.create_window(width=800, height=600) # 设置视角点 ctr = vis.get_view_control() ctr.set_lookat([0, 0, 0]) ctr.set_up([0, 0, 1]) ctr.set_front([1, 0, 0])这段程序有什么问题吗

帮我在下面的代码中添加高斯优化,原代码如下:import numpy as np from sklearn.svm import OneClassSVM from scipy.optimize import minimize def fitness_function(x): """ 定义适应度函数,即使用当前参数下的模型进行计算得到的损失值 """ gamma, nu = x clf = OneClassSVM(kernel='rbf', gamma=gamma, nu=nu) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) # 将错误数量作为损失值进行优化 return error_count def genetic_algorithm(x0, bounds): """ 定义遗传算法优化函数 """ population_size = 20 # 种群大小 mutation_rate = 0.1 # 变异率 num_generations = 50 # 迭代次数 num_parents = 2 # 选择的父代数量 num_elites = 1 # 精英数量 num_genes = x0.shape[0] # 参数数量 # 随机初始化种群 population = np.random.uniform(bounds[:, 0], bounds[:, 1], size=(population_size, num_genes)) for gen in range(num_generations): # 选择父代 fitness = np.array([fitness_function(x) for x in population]) parents_idx = np.argsort(fitness)[:num_parents] parents = population[parents_idx] # 交叉 children = np.zeros_like(parents) for i in range(num_parents): j = (i + 1) % num_parents mask = np.random.uniform(size=num_genes) < 0.5 children[i, mask] = parents[i, mask] children[i, ~mask] = parents[j, ~mask] # 变异 mask = np.random.uniform(size=children.shape) < mutation_rate children[mask] = np.random.uniform(bounds[:, 0], bounds[:, 1], size=np.sum(mask)) # 合并种群 population = np.vstack([parents, children]) # 选择新种群 fitness = np.array([fitness_function(x) for x in population]) elites_idx = np.argsort(fitness)[:num_elites] elites = population[elites_idx] # 输出结果 best_fitness = fitness[elites_idx[0]] print(f"Gen {gen+1}, best fitness: {best_fitness}") return elites[0] # 初始化参数 gamma0, nu0 = 0.1, 0.5 x0 = np.array([gamma0, nu0]) bounds = np.array([[0.01, 1], [0.01, 1]]) # 调用遗传算法优化 best_param = genetic_algorithm(x0, bounds) # 在最佳参数下训练模型,并在测试集上进行测试 clf = OneClassSVM(kernel='rbf', gamma=best_param[0], nu=best_param[1]) clf.fit(train_data) y_pred = clf.predict(test_data) # 计算错误的预测数量 error_count = len([i for i in y_pred if i != 1]) print(f"Best fitness: {error_count}, best parameters: gamma={best_param[0]}, nu={best_param[1]}")

import pandas as pd import warnings import sklearn.datasets import sklearn.linear_model import matplotlib import matplotlib.font_manager as fm import matplotlib.pyplot as plt import numpy as np import seaborn as sns data = pd.read_excel(r'C:\Users\Lenovo\Desktop\data.xlsx') print(data.info()) fig = plt.figure(figsize=(10, 8)) sns.heatmap(data.corr(), cmap="YlGnBu", annot=True) plt.title('相关性分析热力图') plt.rcParams['axes.unicode_minus'] = False plt.rcParams['font.sans-serif'] = 'SimHei' plt.show() y = data['y'] x = data.drop(['y'], axis=1) print('************************输出新的特征集数据***************************') print(x.head()) from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.2, random_state=42) def relu(x): output=np.maximum(0, x) return output def relu_back_propagation(derror_wrt_output,x): derror_wrt_dinputs = np.array(derror_wrt_output, copy=True) derror_wrt_dinputs[x <= 0] = 0 return derror_wrt_dinputs def activated(activation_choose,x): if activation_choose == 'relu': return relu(x) def activated_back_propagation(activation_choose, derror_wrt_output, output): if activation_choose == 'relu': return relu_back_propagation(derror_wrt_output, output) class NeuralNetwork: def __init__(self, layers_strcuture, print_cost = False): self.layers_strcuture = layers_strcuture self.layers_num = len(layers_strcuture) self.param_layers_num = self.layers_num - 1 self.learning_rate = 0.0618 self.num_iterations = 2000 self.x = None self.y = None self.w = dict() self.b = dict() self.costs = [] self.print_cost = print_cost self.init_w_and_b() def set_learning_rate(self,learning_rate): self.learning_rate=learning_rate def set_num_iterations(self, num_iterations): self.num_iterations = num_iterations def set_xy(self, input, expected_output): self.x = input self.y = expected_output

def DSM_grid_sorting_masking_check(DSM,grid_size,threshold_angle): ''' 进行基于DSM格网排序的遮蔽检测方法 :param DSM: 输入的数字高程模型 :param grid_size: 格网大小 :param threshold_angle: 实现遮蔽的最大角度 :return: 遮蔽检测结果。True表示不遮蔽,False表示遮蔽 ''' width = DSM.RasterXSize height = DSM.RasterYSize #计算网格数量 grid_num_y =int(np.ceil(height/grid_size)) grid_num_x =int(np.ceil(width/grid_size)) #初始化遮蔽检测结果矩阵 result = np.ones((grid_num_y,grid_num_x),dtype=bool) #计算每个格网进行遮蔽检测 for i in range(grid_num_y): for j in range(grid_num_x): #当前格网内的点坐标 y_min = i*grid_size y_max = min((i+1)*grid_size,height) x_min = j * grid_size x_max = min((j+1)*grid_size,width) coords = np.argwhere(DSM.ReadAsArray(x_min, y_min, x_max - x_min, y_max - y_min) > 0) coords[:, 0] += y_min coords[:, 1] += x_min # 构建KD树 tree = cKDTree(coords) # 查询每个点的最邻近点 k = 2 dist, ind = tree.query(coords, k=k) # 计算每个点的法向量 normals = np.zeros(coords.shape) for l in range(coords.shape[0]): if k == 2: p1 = coords[l, :] p2 = coords[ind[l, 1], :] else: p1 = coords[l, :] p2 = coords[ind[l, 1], :] normals[l, :] = np.cross(p1 - p2, p1 - DSM.ReadAsArray(p1[1], p1[0], 1, 1)) # 计算每个点的可见性 visibilities = np.zeros(coords.shape[0]) for l in range(coords.shape[0]): if k == 2: p1 = coords[l, :] p2 = coords[ind[l, 1], :] else: p1 = coords[l, :] p2 = coords[ind[l, 1], :] angle = np.cross(np.dot(normals[l, :], (p2 - p1) / dist[l, 1])) * 180 / np.pi if angle <= threshold_angle: visibilities[l] = 1 # 判断当前格网是否遮蔽 if np.sum(visibilities) == 0: result[i, j] = False else: result[i, j] = True return result dsm_path = 'C:/yingxiang/output.tif' DSM = gdal.Open(dsm_path) result = DSM_grid_sorting_masking_check(DSM,grid_size=10,threshold_angle=10) print(result.shape)这段代码怎么改可以输出每个点是否被遮蔽

最新推荐

recommend-type

同邦软件.txt

同邦软件
recommend-type

【精美排版】单片机电子秒表设计Proteus.docx

单片机
recommend-type

计算机基础知识试题与解答

"计算机基础知识试题及答案-(1).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了计算机历史、操作系统、计算机分类、电子器件、计算机系统组成、软件类型、计算机语言、运算速度度量单位、数据存储单位、进制转换以及输入/输出设备等多个方面。 1. 世界上第一台电子数字计算机名为ENIAC(电子数字积分计算器),这是计算机发展史上的一个重要里程碑。 2. 操作系统的作用是控制和管理系统资源的使用,它负责管理计算机硬件和软件资源,提供用户界面,使用户能够高效地使用计算机。 3. 个人计算机(PC)属于微型计算机类别,适合个人使用,具有较高的性价比和灵活性。 4. 当前制造计算机普遍采用的电子器件是超大规模集成电路(VLSI),这使得计算机的处理能力和集成度大大提高。 5. 完整的计算机系统由硬件系统和软件系统两部分组成,硬件包括计算机硬件设备,软件则包括系统软件和应用软件。 6. 计算机软件不仅指计算机程序,还包括相关的文档、数据和程序设计语言。 7. 软件系统通常分为系统软件和应用软件,系统软件如操作系统,应用软件则是用户用于特定任务的软件。 8. 机器语言是计算机可以直接执行的语言,不需要编译,因为它直接对应于硬件指令集。 9. 微机的性能主要由CPU决定,CPU的性能指标包括时钟频率、架构、核心数量等。 10. 运算器是计算机中的一个重要组成部分,主要负责进行算术和逻辑运算。 11. MIPS(Millions of Instructions Per Second)是衡量计算机每秒执行指令数的单位,用于描述计算机的运算速度。 12. 计算机存储数据的最小单位是位(比特,bit),是二进制的基本单位。 13. 一个字节由8个二进制位组成,是计算机中表示基本信息的最小单位。 14. 1MB(兆字节)等于1,048,576字节,这是常见的内存和存储容量单位。 15. 八进制数的范围是0-7,因此317是一个可能的八进制数。 16. 与十进制36.875等值的二进制数是100100.111,其中整数部分36转换为二进制为100100,小数部分0.875转换为二进制为0.111。 17. 逻辑运算中,0+1应该等于1,但选项C错误地给出了0+1=0。 18. 磁盘是一种外存储设备,用于长期存储大量数据,既可读也可写。 这些题目旨在帮助学习者巩固和检验计算机基础知识的理解,涵盖的领域广泛,对于初学者或需要复习基础知识的人来说很有价值。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【进阶】音频处理基础:使用Librosa

![【进阶】音频处理基础:使用Librosa](https://picx.zhimg.com/80/v2-a39e5c9bff1d920097341591ca8a2dfe_1440w.webp?source=1def8aca) # 2.1 Librosa库的安装和导入 Librosa库是一个用于音频处理的Python库。要安装Librosa库,请在命令行中输入以下命令: ``` pip install librosa ``` 安装完成后,可以通过以下方式导入Librosa库: ```python import librosa ``` 导入Librosa库后,就可以使用其提供的各种函数
recommend-type

设置ansible 开机自启

Ansible是一个强大的自动化运维工具,它可以用来配置和管理服务器。如果你想要在服务器启动时自动运行Ansible任务,通常会涉及到配置服务或守护进程。以下是使用Ansible设置开机自启的基本步骤: 1. **在主机上安装必要的软件**: 首先确保目标服务器上已经安装了Ansible和SSH(因为Ansible通常是通过SSH执行操作的)。如果需要,可以通过包管理器如apt、yum或zypper安装它们。 2. **编写Ansible playbook**: 创建一个YAML格式的playbook,其中包含`service`模块来管理服务。例如,你可以创建一个名为`setu
recommend-type

计算机基础知识试题与解析

"计算机基础知识试题及答案(二).doc" 这篇文档包含了计算机基础知识的多项选择题,涵盖了操作系统、硬件、数据表示、存储器、程序、病毒、计算机分类、语言等多个方面的知识。 1. 计算机系统由硬件系统和软件系统两部分组成,选项C正确。硬件包括计算机及其外部设备,而软件包括系统软件和应用软件。 2. 十六进制1000转换为十进制是4096,因此选项A正确。十六进制的1000相当于1*16^3 = 4096。 3. ENTER键是回车换行键,用于确认输入或换行,选项B正确。 4. DRAM(Dynamic Random Access Memory)是动态随机存取存储器,选项B正确,它需要周期性刷新来保持数据。 5. Bit是二进制位的简称,是计算机中数据的最小单位,选项A正确。 6. 汉字国标码GB2312-80规定每个汉字用两个字节表示,选项B正确。 7. 微机系统的开机顺序通常是先打开外部设备(如显示器、打印机等),再开启主机,选项D正确。 8. 使用高级语言编写的程序称为源程序,需要经过编译或解释才能执行,选项A正确。 9. 微机病毒是指人为设计的、具有破坏性的小程序,通常通过网络传播,选项D正确。 10. 运算器、控制器及内存的总称是CPU(Central Processing Unit),选项A正确。 11. U盘作为外存储器,断电后存储的信息不会丢失,选项A正确。 12. 财务管理软件属于应用软件,是为特定应用而开发的,选项D正确。 13. 计算机网络的最大好处是实现资源共享,选项C正确。 14. 个人计算机属于微机,选项D正确。 15. 微机唯一能直接识别和处理的语言是机器语言,它是计算机硬件可以直接执行的指令集,选项D正确。 16. 断电会丢失原存信息的存储器是半导体RAM(Random Access Memory),选项A正确。 17. 硬盘连同驱动器是一种外存储器,用于长期存储大量数据,选项B正确。 18. 在内存中,每个基本单位的唯一序号称为地址,选项B正确。 以上是对文档部分内容的详细解释,这些知识对于理解和操作计算机系统至关重要。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【基础】网络编程入门:使用HTTP协议

![【基础】网络编程入门:使用HTTP协议](https://img-blog.csdnimg.cn/direct/4fbc6b5a6d744a519429654f56ea988e.png) # 1. 网络编程基础** **1.1 网络基础知识** 网络是连接计算机和设备的系统,允许它们交换数据和资源。它由节点(计算机、服务器、路由器等)和连接它们的数据链路组成。网络可以是局域网(LAN)、广域网(WAN)或互联网。 **1.2 TCP/IP协议栈** TCP/IP协议栈是一组通信协议,用于在网络上传输数据。它分为四层: * **链路层:**处理物理连接和数据传输。 * **网络层:
recommend-type

时间序列大模型的研究进展

时间序列大模型是近年来自然语言处理领域的一个热门研究方向,它们专注于理解和生成基于时间顺序的数据,比如文本序列、音频或视频信号。这类模型通常结合了Transformer架构(如BERT、GPT等)与循环神经网络(RNNs, LSTM)的长短期记忆能力,以捕捉序列数据中的时间依赖性。 近期的研究进展包括: 1. 长序列建模:研究人员一直在努力提高模型能够处理长序列的能力,例如M6和Turing-NLG,这些模型扩展了序列长度限制,增强了对长期依赖的理解。 2. 结合外部知识:一些模型开始融合外部知识库,如ProphetNet和D-PTM,以提升对复杂时间序列的预测精度。 3. 强化学习和