端元混合模型的代码
时间: 2024-02-18 08:05:33 浏览: 98
端元混合模型(Mixture Model)是一种常用的聚类算法,其代码实现如下:
```python
import numpy as np
from sklearn.cluster import KMeans
class MixtureModel:
def __init__(self, n_components = 2):
self.n_components = n_components
self.weights = None
self.means = None
self.covariances = None
def fit(self, X, n_iter = 100):
n_samples, n_features = X.shape
# 初始化混合模型参数
self.weights = np.ones(self.n_components) / self.n_components
self.means = KMeans(n_clusters = self.n_components).fit(X).cluster_centers_
self.covariances = np.tile(np.identity(n_features), (self.n_components, 1, 1))
# EM算法迭代
for i in range(n_iter):
# E步骤:计算每个样本属于每个混合成分的概率
likelihood = np.zeros((n_samples, self.n_components))
for j in range(self.n_components):
likelihood[:, j] = self.weights[j] * multivariate_normal.pdf(X, mean = self.means[j], cov = self.covariances[j])
responsibility = likelihood / np.sum(likelihood, axis = 1, keepdims = True)
# M步骤:重新估计混合模型参数
Nk = np.sum(responsibility, axis = 0)
self.weights = Nk / n_samples
self.means = np.dot(responsibility.T, X) / Nk.reshape(-1, 1)
for j in range(self.n_components):
diff = X - self.means[j]
self.covariances[j] = np.dot(responsibility[:, j] * diff.T, diff) / Nk[j]
def predict(self, X):
likelihood = np.zeros((X.shape[0], self.n_components))
for j in range(self.n_components):
likelihood[:, j] = self.weights[j] * multivariate_normal.pdf(X, mean = self.means[j], cov = self.covariances[j])
return np.argmax(likelihood, axis = 1)
```
其中,`fit`方法是针对训练数据进行混合模型的参数估计,`predict`方法则是对新数据进行分类预测。这里使用`scikit-learn`库中的`KMeans`算法来初始化混合模型的均值参数。在迭代过程中,使用`EM`算法来更新混合模型的参数。
阅读全文