编写一段基于matlab的bp神经网络车牌识别代码
时间: 2023-04-05 15:04:03 浏览: 152
我可以回答这个问题。以下是一个基于 MATLAB 的 BP 神经网络车牌识别代码示例:
% 导入训练数据和测试数据
train_data = load('train_data.mat');
test_data = load('test_data.mat');
% 设置神经网络参数
input_layer_size = size(train_data, 2); % 输入层大小
hidden_layer_size = 25; % 隐藏层大小
num_labels = 10; % 输出层大小
% 初始化随机权重
initial_theta1 = rand(hidden_layer_size, input_layer_size + 1) * 0.01;
initial_theta2 = rand(num_labels, hidden_layer_size + 1) * 0.01;
% 将训练数据和测试数据转换为矩阵
X_train = train_data(:, 1:end-1);
y_train = train_data(:, end);
X_test = test_data(:, 1:end-1);
y_test = test_data(:, end);
% 将标签转换为独热编码
y_train = eye(num_labels)(y_train, :);
y_test = eye(num_labels)(y_test, :);
% 训练神经网络
options = optimset('MaxIter', 50);
lambda = 0.1;
costFunction = @(p) nnCostFunction(p, input_layer_size, hidden_layer_size, num_labels, X_train, y_train, lambda);
[theta, cost] = fmincg(costFunction, [initial_theta1(:); initial_theta2(:)], options);
% 预测测试数据
pred = predict(theta, input_layer_size, hidden_layer_size, num_labels, X_test);
% 计算准确率
accuracy = mean(double(pred == y_test)) * 100;
disp(['准确率为:' num2str(accuracy) '%']);
请注意,这只是一个示例代码,实际应用中需要根据具体情况进行修改和优化。
阅读全文