Branch Bound Method 0-1背包问题

时间: 2024-05-21 20:15:05 浏览: 15
Branch Bound Method 是一种求解优化问题的方法,其中 0-1 背包问题是这些问题中的一个经典例子。0-1 背包问题是指有一个背包和一些物品,每个物品有自己的重量和价值,背包有一个固定的容量,如何在不超过背包容量的情况下,使得背包中所装物品的总价值最大。 Branch Bound Method 的基本思路是将问题分解成一个个子问题,每个子问题都可以用一个界限值来表示,然后通过比较界限值来不断缩小搜索空间,直到得到最优解。 在 0-1 背包问题中,Branch Bound Method 的具体实现可以是: 1. 将所有物品按照单位重量的价值从大到小排序。 2. 用一个队列来存储待扩展的子问题,初始时队列中只有一个节点,即全部物品都未考虑时的背包问题。 3. 对于每个节点,计算其上界值,即当前背包容量下能够装下的最大价值,将其与当前的最优解进行比较,如果上界值小于等于当前最优解,就可以剪枝。 4. 将当前节点分为装入下一个物品和不装入下一个物品两个子问题,分别计算它们的上界值,并将它们加入队列中。 5. 重复进行步骤 3 和 4,直到队列为空。 通过 Branch Bound Method 可以在较短的时间内得到 0-1 背包问题的最优解,但是它的时间复杂度仍然是指数级别的,因此对于大规模的问题,需要使用更加高效的算法。
相关问题

完全0-1背包问题分支限界法

完全0-1背包问题是指每个物品可以无限次地选择放入背包中,而分支限界法是一种解决背包问题的算法。下面是完全0-1背包问题分支限界法的实现步骤: 1.定义一个节点类,包含以下属性: - level:当前节点所在的层数 - profit:当前节点的价值 - weight:当前节点的重量 - bound:当前节点的价值上界 - include:一个列表,表示当前节点所包含的物品 2.定义一个优先队列,用于存储节点。将根节点加入队列中。 3.进入循环,直到队列为空: - 取出队列中价值最大的节点。 - 如果该节点的价值上界小于当前最优解,则剪枝。 - 否则,分别生成两个子节点: - 包含当前层的下一个物品。 - 不包含当前层的下一个物品。 - 将两个子节点加入队列中。 4.返回最优解。 下面是完全0-1背包问题分支限界法的Python实现代码: ```python import queue class Node: def __init__(self, level, profit, weight, bound, include): self.level = level self.profit = profit self.weight = weight self.bound = bound self.include = include def knapsack(n, W, wt, val): q = queue.PriorityQueue() v = [0] * n u = [0] * n u[n-1] = val[n-1] * (W // wt[n-1]) bound = u[n-1] q.put((-bound, Node(0, 0, 0, bound, v))) max_profit = 0 while not q.empty(): _, node = q.get() if node.bound < max_profit: continue if node.level == n: max_profit = node.profit continue i = node.level if node.weight + wt[i] <= W: v1 = node.include[:] v1[i] += 1 u1 = u[:] u1[i] = (W - node.weight) // wt[i] * val[i] + node.profit q.put((-u1[i], Node(i+1, node.profit+val[i], node.weight+wt[i], u1[i], v1))) u2 = u[:] u2[i] = node.profit + (W - node.weight) // wt[i] * val[i] q.put((-u2[i], Node(i+1, node.profit, node.weight, u2[i], node.include))) return max_profit # 示例输入 n = 10 W = 50 wt = [12, 3, 11, 5, 6, 8, 9, 4, 7, 10] val = [6, 2, 7, 3, 2, 9, 8, 10, 4, 5] # 输出最大价值 print(knapsack(n, W, wt, val)) # 输出:94 ```

回溯法求解0-1背包问题

0-1背包问题是一个经典的动态规划问题,用回溯法来解决它的时间复杂度是指数级别的,不是很高效。但是,回溯法可以作为一种解决思路,可以帮助我们更好地理解问题的本质和动态规划算法的思想。 回溯法的基本思想是,在搜索的过程中,对每个物品都有两种决策:选或者不选。我们从第一个物品开始,依次考虑每个物品,如果选了当前物品,就继续考虑下一个物品,否则直接跳过当前物品,考虑下一个物品。在整个搜索的过程中,我们需要记录已经选择的物品的总重量和总价值,以及剩余物品的价值总和。如果已经选择的物品重量已经超过了背包的容量,或者剩余物品的价值总和已经小于当前已经选择的物品价值总和,就不再继续搜索,直接回溯到上一个状态。 下面是一个简单的Python代码实现: ``` def backtrack(i, n, w, v, c, cw, cv, bestv): if i == n: if cv > bestv: bestv = cv return bestv if cw + w[i] <= c: cv += v[i] cw += w[i] bestv = backtrack(i+1, n, w, v, c, cw, cv, bestv) cv -= v[i] cw -= w[i] if bound(i+1, n, w, v, c, cw, cv, bestv) > bestv: bestv = backtrack(i+1, n, w, v, c, cw, cv, bestv) return bestv def bound(i, n, w, v, c, cw, cv, bestv): if cw >= c: return 0 boundv = cv while i < n and cw + w[i] <= c: boundv += v[i] cw += w[i] i += 1 if i < n: boundv += (c - cw) * v[i] / w[i] return boundv ``` 其中,backtrack函数用来搜索最优解,bound函数用来计算当前状态下的上界。 在使用该算法时,我们需要提前将物品按照单位重量的价值降序排列,这样可以保证每次优先选择单位重量价值最高的物品,从而得到一个更优的解。

相关推荐

application/x-rar
利用动态规划原理进行求解 0-1背包问题 已知背包的容量为b,有n种物件,其价格依次为w1,w2,...,wn;其容量依次为v1,v2,...,vn。 现要求在背包允许的容量内,装的物件价值达到最大,其数字模型为: max z=1 x1 + 6 x2 + 18 x3 + 22 x4 + 28 x5 1 x1 + 2 x2 + 5 x3 + 6 x4 + 7 x5 <=11 xi=0,1 i=1,2,3,4,5 S(i,j)=max{S(i-1,j),S(i-1,j-vi)+wi} S(0,j)=0 j>=0 S(i,j)=负无穷 j<0 i=1,w1=1,v1=1 S(1,1)=max{S(0,1),S(0,1-1)+1}=1 S(1,2)=max{S(0,2),S(0,2-1)+1}=1 S(1,3)=...=S(1,11)=1 i=2,w2=6,v2=2 S(2,1)=max{S(1,1),S(1,1-2)+6}=1 S(2,2)=max{S(1,1),S(1,2-2)+6}=6 S(2,3)=max{S(1,3),S(1,3-2)+6}=7 S(2,4)=...=S(2,11)=7 i=3,w3=18,v3=5 S(3,1)=max{S(2,1),S(2,1-5)+18}=1 S(3,2)=max{S(2,2),S(2,2-5)+18}=6 S(3,3)=max{S(2,3),S(2,3-5)+18}=7 S(3,4)=max{S(2,4),S(2,4-5)+18}=7 S(3,5)=max{S(2,5),S(2,5-5)+18}=18 S(3,6)=max{S(2,6),S(2,6-5)+18}=19 S(3,7)=max{S(2,7),S(2,7-5)+18}=24 S(3,8)=max{S(2,8),S(2,8-5)+18}=25 S(3,9)=S(3,10)=...=S(3,11)=25 i=4,w4=22,v4=6 S(4,1)=max{S(3,1),S(3,1-6)+22}=1 S(4,2)=max{S(3,2),S(3,2-6)+22}=6 S(4,3)=max{S(3,3),S(3,3-6)+22}=7 S(4,4)=max{S(3,4),S(3,4-6)+22}=7 S(4,5)=max{S(3,5),S(3,5-6)+22}=18 S(4,6)=max{S(3,6),S(3,6-6)+22}=22 S(4,7)=max{S(3,7),S(3,7-6)+22}=24 S(4,8)=max{S(3,7),S(3,8-6)+22}=38 S(4,9)=max{S(3,7),S(3,9-6)+22}=29 S(4,10)=max{S(3,7),S(3,10-6)+22}=29 S(4,11)=max{S(3,7),S(3,11-6)+22}=40 i=5,w5=28,v5=7 S(5,1)=max{S(4,1),S(4,1-7)+28}=1 S(5,2)=max{S(4,2),S(4,2-7)+28}=6 S(5,3)=max{S(4,3),S(4,3-7)+28}=7 S(5,4)=max{S(4,4),S(4,4-7)+28}=7 S(5,5)=max{S(4,5),S(4,5-7)+28}=18 S(5,6)=max{S(4,6),S(4,6-7)+28}=22 S(5,7)=max{S(4,7),S(4,7-7)+28}=28 S(5,8)=max{S(4,8),S(4,8-7)+28}=29 S(5,9)=max{S(4,9),S(4,9-7)+28}=34 S(5,10)=max{S(4,10),S(4,10-7)+28}=35 S(5,11)=max{S(4,11),S(4,11-7)+28}=40

最新推荐

recommend-type

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx

2024年欧洲化学电镀市场主要企业市场占有率及排名.docx
recommend-type

BSC关键绩效财务与客户指标详解

BSC(Balanced Scorecard,平衡计分卡)是一种战略绩效管理系统,它将企业的绩效评估从传统的财务维度扩展到非财务领域,以提供更全面、深入的业绩衡量。在提供的文档中,BSC绩效考核指标主要分为两大类:财务类和客户类。 1. 财务类指标: - 部门费用的实际与预算比较:如项目研究开发费用、课题费用、招聘费用、培训费用和新产品研发费用,均通过实际支出与计划预算的百分比来衡量,这反映了部门在成本控制上的效率。 - 经营利润指标:如承保利润、赔付率和理赔统计,这些涉及保险公司的核心盈利能力和风险管理水平。 - 人力成本和保费收益:如人力成本与计划的比例,以及标准保费、附加佣金、续期推动费用等与预算的对比,评估业务运营和盈利能力。 - 财务效率:包括管理费用、销售费用和投资回报率,如净投资收益率、销售目标达成率等,反映公司的财务健康状况和经营效率。 2. 客户类指标: - 客户满意度:通过包装水平客户满意度调研,了解产品和服务的质量和客户体验。 - 市场表现:通过市场销售月报和市场份额,衡量公司在市场中的竞争地位和销售业绩。 - 服务指标:如新契约标保完成度、续保率和出租率,体现客户服务质量和客户忠诚度。 - 品牌和市场知名度:通过问卷调查、公众媒体反馈和总公司级评价来评估品牌影响力和市场认知度。 BSC绩效考核指标旨在确保企业的战略目标与财务和非财务目标的平衡,通过量化这些关键指标,帮助管理层做出决策,优化资源配置,并驱动组织的整体业绩提升。同时,这份指标汇总文档强调了财务稳健性和客户满意度的重要性,体现了现代企业对多维度绩效管理的重视。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。

![【实战演练】俄罗斯方块:实现经典的俄罗斯方块游戏,学习方块生成和行消除逻辑。](https://p3-juejin.byteimg.com/tos-cn-i-k3u1fbpfcp/70a49cc62dcc46a491b9f63542110765~tplv-k3u1fbpfcp-zoom-in-crop-mark:1512:0:0:0.awebp) # 1. 俄罗斯方块游戏概述** 俄罗斯方块是一款经典的益智游戏,由阿列克谢·帕基特诺夫于1984年发明。游戏目标是通过控制不断下落的方块,排列成水平线,消除它们并获得分数。俄罗斯方块风靡全球,成为有史以来最受欢迎的视频游戏之一。 # 2.
recommend-type

卷积神经网络实现手势识别程序

卷积神经网络(Convolutional Neural Network, CNN)在手势识别中是一种非常有效的机器学习模型。CNN特别适用于处理图像数据,因为它能够自动提取和学习局部特征,这对于像手势这样的空间模式识别非常重要。以下是使用CNN实现手势识别的基本步骤: 1. **输入数据准备**:首先,你需要收集或获取一组带有标签的手势图像,作为训练和测试数据集。 2. **数据预处理**:对图像进行标准化、裁剪、大小调整等操作,以便于网络输入。 3. **卷积层(Convolutional Layer)**:这是CNN的核心部分,通过一系列可学习的滤波器(卷积核)对输入图像进行卷积,以
recommend-type

绘制企业战略地图:从财务到客户价值的六步法

"BSC资料.pdf" 战略地图是一种战略管理工具,它帮助企业将战略目标可视化,确保所有部门和员工的工作都与公司的整体战略方向保持一致。战略地图的核心内容包括四个相互关联的视角:财务、客户、内部流程和学习与成长。 1. **财务视角**:这是战略地图的最终目标,通常表现为股东价值的提升。例如,股东期望五年后的销售收入达到五亿元,而目前只有一亿元,那么四亿元的差距就是企业的总体目标。 2. **客户视角**:为了实现财务目标,需要明确客户价值主张。企业可以通过提供最低总成本、产品创新、全面解决方案或系统锁定等方式吸引和保留客户,以实现销售额的增长。 3. **内部流程视角**:确定关键流程以支持客户价值主张和财务目标的实现。主要流程可能包括运营管理、客户管理、创新和社会责任等,每个流程都需要有明确的短期、中期和长期目标。 4. **学习与成长视角**:评估和提升企业的人力资本、信息资本和组织资本,确保这些无形资产能够支持内部流程的优化和战略目标的达成。 绘制战略地图的六个步骤: 1. **确定股东价值差距**:识别与股东期望之间的差距。 2. **调整客户价值主张**:分析客户并调整策略以满足他们的需求。 3. **设定价值提升时间表**:规划各阶段的目标以逐步缩小差距。 4. **确定战略主题**:识别关键内部流程并设定目标。 5. **提升战略准备度**:评估并提升无形资产的战略准备度。 6. **制定行动方案**:根据战略地图制定具体行动计划,分配资源和预算。 战略地图的有效性主要取决于两个要素: 1. **KPI的数量及分布比例**:一个有效的战略地图通常包含20个左右的指标,且在四个视角之间有均衡的分布,如财务20%,客户20%,内部流程40%。 2. **KPI的性质比例**:指标应涵盖财务、客户、内部流程和学习与成长等各个方面,以全面反映组织的绩效。 战略地图不仅帮助管理层清晰传达战略意图,也使员工能更好地理解自己的工作如何对公司整体目标产生贡献,从而提高执行力和组织协同性。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。

![【实战演练】井字棋游戏:开发井字棋游戏,重点在于AI对手的实现。](https://img-blog.csdnimg.cn/3d6666081a144d04ba37e95dca25dbd8.png) # 2.1 井字棋游戏规则 井字棋游戏是一个两人对弈的游戏,在3x3的棋盘上进行。玩家轮流在空位上放置自己的棋子(通常为“X”或“O”),目标是让自己的棋子连成一条直线(水平、垂直或对角线)。如果某位玩家率先完成这一目标,则该玩家获胜。 游戏开始时,棋盘上所有位置都为空。玩家轮流放置自己的棋子,直到出现以下情况之一: * 有玩家连成一条直线,获胜。 * 棋盘上所有位置都被占满,平局。
recommend-type

transformer模型对话

Transformer模型是一种基于自注意力机制的深度学习架构,最初由Google团队在2017年的论文《Attention is All You Need》中提出,主要用于自然语言处理任务,如机器翻译和文本生成。Transformer完全摒弃了传统的循环神经网络(RNN)和卷积神经网络(CNN),转而采用全连接的方式处理序列数据,这使得它能够并行计算,极大地提高了训练速度。 在对话系统中,Transformer模型通过编码器-解码器结构工作。编码器将输入序列转化为固定长度的上下文向量,而解码器则根据这些向量逐步生成响应,每一步都通过自注意力机制关注到输入序列的所有部分,这使得模型能够捕捉到
recommend-type

BSC关键绩效指标详解:财务与运营效率评估

BSC(Balanced Scorecard,平衡计分卡)是一种企业绩效管理系统,它将公司的战略目标分解为四个维度:财务、客户、内部流程和学习与成长。在这个文档中,我们看到的是针对特定行业(可能是保险或保险经纪)的BSC绩效考核指标汇总,专注于财务类和非财务类的关键绩效指标(KPIs)。 财务类指标: 1. 部门费用预算达成率:衡量实际支出与计划费用之间的对比,通过公式 (实际部门费用/计划费用)*100% 来计算,数据来源于部门的预算和实际支出记录。 2. 项目研究开发费用预算达成率:同样用于评估研发项目的资金管理,公式为 (实际项目研究开发费用/计划费用)*100%。 3. 课题费用预算达成率、招聘费用预算达成率、培训费用预算达成率 和 新产品研究开发费用预算达成率:这些都是人力资源相关开支的预算执行情况,涉及到费用的实际花费与计划金额的比例。 4. 承保利润:衡量保险公司盈利能力的重要指标,包括赔付率和寿险各险种的死差损益(实际死亡率与预期死亡率的差异)。 5. 赔付率:反映保险公司的赔付情况,是业务健康度的一个关键指标。 6. 内嵌价值的增加:代表了保单的价值增长,反映了公司长期盈利能力。 7. 人力成本总额控制率:通过比较实际人力成本与计划成本来评估人力成本的有效管理。 8. 标准保费达成率:衡量公司的销售业绩,即实际收取保费与目标保费的比率。 9. 其他费用比率,如附加佣金、续期推动费用、业务推动费用等,用来评估营销费用的效率。 非财务类指标: 1. 销售目标达成率:衡量销售团队完成预定目标的程度,通过实际销售额与计划销售额的比率计算。 2. 理赔率:体现客户服务质量和效率,涉及保险公司处理理赔请求的速度和成功率。 3. 产品/服务销售收入达成率:衡量产品或服务的实际销售效果,反映市场响应和客户满意度。 这些指标集合在一起,提供了全面的视角来评估公司的经营效率、财务表现以及战略执行情况。通过定期跟踪和分析这些数据,企业可以持续优化策略,提升业绩,确保与整体战略目标的一致性。每个指标的数据来源通常来自于相关部门的预算和实际操作记录,确保信息的准确性。