列出动态规划算法、贪心算法、分治法、回溯算法的时间复杂度和空间复杂度
时间: 2023-10-03 15:06:10 浏览: 315
贪心算法和动态规划以及分治法的区别? (1) 贪心算法和动态规划.pdf
5星 · 资源好评率100%
以下是动态规划算法、贪心算法、分治法和回溯算法的时间复杂度和空间复杂度的概述:
1. 动态规划算法
时间复杂度:O(n^2)或O(n*m),其中n和m分别为问题规模的两个维度。如果状态转移方程中只涉及前一状态的计算,则时间复杂度为O(n)或O(m)。
空间复杂度:O(n*m)或O(n),其中n和m分别为问题规模的两个维度。如果状态转移方程中只涉及前一状态的计算,则空间复杂度为O(1)。
2. 贪心算法
时间复杂度:O(n*logn),其中n为问题规模。如果使用堆等数据结构,则时间复杂度为O(n)。
空间复杂度:O(1)。
3. 分治法
时间复杂度:O(n*logn),其中n为问题规模。如果问题划分不平衡,则时间复杂度会更高。
空间复杂度:O(n),其中n为问题规模。如果算法是递归实现,则递归栈的空间复杂度为O(logn)。
4. 回溯算法
时间复杂度:通常为指数级别,即O(2^n)或O(n!),其中n为问题规模。
空间复杂度:通常为O(n),其中n为问题规模。如果算法是递归实现,则递归栈的空间复杂度为O(n)。
阅读全文