factorization meets the neighborhood: a multifaceted collaborative filtering

时间: 2023-08-09 21:02:55 浏览: 79
因子分解遇见邻域:一个多方面的协同过滤方法是一种结合了因子分解和邻域方法的协同过滤算法。在传统的协同过滤算法中,主要有两种方法:基于邻域的方法和基于模型的方法。基于邻域的方法主要是通过计算用户间或物品间的相似度来推荐相似用户或相似物品的评分。而基于模型的方法则是通过构建模型来预测评分。 因子分解是一种常见的基于模型的方法,它可以将用户-物品评分矩阵分解为两个低秩矩阵的乘积,以得到用户和物品的隐含特征。这种方法可以有效地处理稀疏性和冷启动的问题,但在数据稀疏的情况下仍然存在一些挑战。 为了克服因子分解算法在数据稀疏情况下的问题,多方面的协同过滤算法提出了将因子分解与邻域方法相结合的新思路。具体而言,它利用了邻域方法的局部信息来改进因子分解算法的准确度和鲁棒性。 在多方面的协同过滤算法中,首先通过因子分解算法得到用户和物品的隐含特征,并用隐含特征对评分进行预测。然后,利用邻域方法计算用户或物品的邻居,并根据邻居的评分信息进行调整。最终,通过加权融合因子分解和邻域方法的结果,得到最终的推荐结果。 该算法的优点是综合了因子分解和邻域方法的优势,可以克服两种方法在特定情况下的局限性。它既考虑了全局的隐含特征,又考虑了局部的用户或物品相似度。因此,多方面的协同过滤算法在推荐系统中具有广泛的应用前景。
相关问题

《DeepFM: A Factorization-Machine based Neural Network for CTR Prediction》的摘要

DeepFM 是一种基于因式分解机的神经网络,用于点击率预测。它将因式分解机和神经网络结合起来,以利用它们各自的优点。DeepFM 可以在大规模数据集上进行训练,并且在点击率预测任务上具有很高的准确性。

def QR(A): def householder(a): n = len(a) v = np.zeros(n) v[0] = np.linalg.norm(a) if a[0] < 0: v[0] = -v[0] v = v + a v = v / np.linalg.norm(v) H = np.eye(n) - 2 * np.outer(v, v) return H def qr_factorization(A): m, n = A.shape Q = np.eye(m) R = A.copy() for j in range(min(m, n)): a = R[j:, j] H = np.eye(m) H[j:, j:] = householder(a) Q = Q @ H.T R = H @ R return Q, R Q, R = qr_factorization(A) for i in range(10): for j in range(10): Q[i,j]=Q[j,i] #faire la transposition b = sp.Matrix(sp.symbols('a1:11')) b = Q@b x = sp.zeros(10, 1) for i in range(9, -1, -1): x[i] = b[i] for j in range(i+1, 10): x[i] -= R[i, j] * x[j] x[i] /= R[i, i] coeff_matrix = sp.Matrix(np.zeros((10, 10))) for i in range(10): for j in range(10): coeff_matrix[i, j] = x[i].coeff(sp.Symbol('a{}'.format(j + 1))) return(coeff_matrix) 我想让这个函数返回的是A的逆矩阵,请问要怎么修改?A是一个可逆的方阵

你可以使用 QR 分解来求解逆矩阵。具体而言,对于一个可逆的方阵 A,我们可以通过 QR 分解得到 Q 和 R,然后通过求解线性方程组来得到 A 的逆矩阵。 以下是修改后的代码: ```python import numpy as np import sympy as sp def QR(A): def householder(a): n = len(a) v = np.zeros(n) v[0] = np.linalg.norm(a) if a[0] < 0: v[0] = -v[0] v = v + a v = v / np.linalg.norm(v) H = np.eye(n) - 2 * np.outer(v, v) return H def qr_factorization(A): m, n = A.shape Q = np.eye(m) R = A.copy() for j in range(min(m, n)): a = R[j:, j] H = np.eye(m) H[j:, j:] = householder(a) Q = Q @ H.T R = H @ R return Q, R Q, R = qr_factorization(A) n = A.shape[0] A_inv = np.zeros((n,n)) for i in range(n): # 求解线性方程组 Qy = e_i e_i = np.zeros(n) e_i[i] = 1 y = np.linalg.solve(Q, e_i) # 求解线性方程组 Rx = y x = np.zeros(n) for i in range(n-1, -1, -1): x[i] = y[i] for j in range(i+1, n): x[i] -= R[i, j] * x[j] x[i] /= R[i, i] A_inv[:,i] = x return A_inv ``` 可以看到,在修改后的代码中,我们首先得到了 A 的 QR 分解的结果 Q 和 R。然后,我们对于每个单位向量 $e_i$,都求解了线性方程组 $Qy = e_i$ 和 $Rx = y$,得到了 A 的逆矩阵的第 $i$ 列。最终,将这些列拼接起来就得到了 A 的逆矩阵。

相关推荐

最新推荐

ZKEACMS build with .Net 7 (.Net CMS)可视化设计在线编辑内容管理系统.zip

ZKEACMS build with .Net 7 (.Net CMS)可视化设计在线编辑内容管理系统.zip

rasterio-1.3.9-cp312-cp312-win_amd64.whl.zip

rasterio-1.3.9-cp312-cp312-win_amd64.whl.zip

微信小程序组件 _ API _ 云开发示例.zip

微信小程序组件 _ API _ 云开发示例.zip

basemap-1.3.7-cp312-cp312-win_arm64.whl.zip

basemap-1.3.7-cp312-cp312-win_arm64.whl.zip

步行高级机器人技术.doc

步行高级机器人技术.doc

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

粒子群多目标算法matlab代码【MATLAB代码实现】定义优化问题参数

# 1. 粒子群多目标算法简介 ## 1.1 什么是粒子群算法? 粒子群算法是一种基于群体智能的优化算法,灵感来源于鸟群或鱼群等生物群体的行为。每个“粒子”代表问题空间中的一个候选解,而整个粒子群代表了候选解的一个群体。粒子在解空间中搜索最优解,通过个体的经验和群体的协作来不断调整自身位置和速度,从而逐步靠近最优解。 ## 1.2 粒子群算法在多目标优化中的应用 粒子群算法最初是针对单目标优化问题提出的,但后来被扩展应用到了多目标优化领域。与单目标优化不同,多目标优化需要考虑多个冲突的目标函数,因此粒子群算法的应用在多目标优化中具有一定的挑战性。 ## 1.3 粒子群多目标算法原理解

c语言本题要求编写程序,计算学生们的平均成绩,并统计不及格人数。题目保证输入输出均在整型范围内。

好的,下面是一个简单的 C 语言程序,可以帮助你计算学生们的平均成绩,并统计不及格人数: ```c #include <stdio.h> int main() { int n, sum = 0, fail = 0; scanf("%d", &n); // 输入学生数量 for (int i = 0; i < n; i++) { int score; scanf("%d", &score); // 输入学生的成绩 sum += score; // 累加学生的成绩 if (score < 60) {

资料计算机二级Python真题及答案解析1练习.pdf

。。。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依