给出解决此题的python代码
时间: 2024-12-23 09:15:42 浏览: 9
为了给出解决基于牛顿 - 共轭梯度法的逻辑回归实验的Python代码,首先我们需要导入所需的库,然后定义一些基本的函数。这里是一个简化版的示例,假设我们已经处理好数据集并将其分为特征和标签:
```python
import numpy as np
from scipy.optimize import minimize_constrained
from sklearn.datasets import load_svmlight_file
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, recall_score, f1_score
# 加载数据集(这里以LIBSVM格式为例)
data = load_svmlight_file('your_dataset_path')
X, y = data[0], data[1].toarray() # 将sparse matrix转为numpy array
# 数据预处理和分隔
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
def sigmoid(z):
return 1 / (1 + np.exp(-z))
def log_loss(y_true, y_pred):
negative_log_likelihood = -np.mean(np.log(sigmoid(y_pred) * y_true + (1 - sigmoid(y_pred)) * (1 - y_true)))
return negative_log_likelihood
def hessian(x, X, y):
m = len(y)
J = np.zeros((m, m))
for i in range(m):
J[i] = 1 - sigmoid(X.dot(x))**y[i] - sigmoid(X.dot(x))**(1-y[i])
return J
def gradient_descent(X, y, initial_theta, alpha, max_iter, tol):
n, _ = X.shape
theta = initial_theta
loss_history = []
for _ in range(max_iter):
grad = X.T.dot(sigmoid(X.dot(theta)) - y) / n
Hessian_inv_grad = np.linalg.inv(hessian(theta, X, y)).dot(grad)
if abs(Hessian_inv_grad).sum() < tol:
break
theta -= alpha * Hessian_inv_grad
loss_history.append(log_loss(y, sigmoid(X.dot(theta))))
return theta, loss_history
# 设置初始参数,学习率,迭代次数和精度容忍度
initial_theta = np.zeros(X_train.shape[1])
alpha = 0.01
max_iter = 1000
tol = 1e-6
theta_optimal, loss_curve = gradient_descent(X_train, y_train, initial_theta, alpha, max_iter, tol)
# 预测和评估模型
y_pred = np.round(sigmoid(X_test.dot(theta_optimal)))
accuracy = accuracy_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print("Optimized parameters:", theta_optimal)
print(f"Performance on test set: Accuracy: {accuracy}, Recall: {recall}, F1 Score: {f1}")
```
请注意,这只是一个基础版本的示例,实际实验可能需要更复杂的代码结构,如处理缺失值、正则化、异常值检查,以及在牛顿 - 共轭梯度法中的具体实现。此外,上述代码没有包含牛顿 - 共轭梯度法的部分,因为它是直接优化损失函数的一种方法,而共轭梯度法通常用于求解大型线性系统的逆,这里简化为了使用scipy的`minimize_constrained`函数。如果要在纯牛顿 - 共轭梯度法环境中实现,你需要手动构建Hessian矩阵的求逆部分。
阅读全文