a=imread('C:\Users\hp\Desktop\yy.PNG'); b=rgb2gray(a); c=double(b); [m,n]=size(c); T=30; d=c; for i=2:m-1 for j=2:n-1 d(i,j)=abs(4*c(i,j)-c(i-1,j)-c(i,j-1)-c(i,j+1)-c(i+1,j)); if d(i,j)>T d(i,j)=255; else d(i,j)=0; end end end d=uint8(d); %imshow(d) %imshow(a) subplot(1,2,1), imshow(a); title('0riginal image'); subplot(1,2,2), imshow(d); title('diedai image');代码中为什么阈值是30
时间: 2024-04-03 12:34:13 浏览: 91
在这段代码中,阈值被设定为30是因为它是作者根据实验调整得到的一个合适的值,可以用来将图片进行二值化处理,使得图片中的目标更加明显。这个阈值的设定是经验性的,可能并不适用于所有的图片和应用场景,因此在实际使用中需要根据具体情况进行调整。
在这段代码中,作者使用了迭代阈值法对图片进行了二值化处理。迭代阈值法是一种常用的图像分割方法,其基本思想是:先初始化一个阈值,然后用该阈值将图像进行二值化处理,接着计算得到前景和背景的平均灰度值,将其作为新的阈值进行迭代,直到阈值不再变化为止。在这个代码中,作者使用了一种简化的迭代阈值法,直接将阈值设定为30,并通过计算像素点周围的灰度值之和和当前像素点灰度值的差值,来决定将该像素点设置为前景还是背景。
相关问题
%2.1 s=imread('C:\Users\hp\Desktop\yy.PNG');%读入原图像 i=rgb2gray(s) i=double(i) j=fft2(i); %傅里叶变换 k=fftshift(j); % 直流分量移到频谱中心 l=log(abs(k)); %对数变换 m=fftshift(j); %直流分量移到频谱中心 RR=real(m); %取傅里叶变换的实部 II=imag(m); %取傅里叶变换的虚部 A=sqrt(RR.^2+II.^2); %计算频谱府幅值 A=(A-min(min(A)))/(max(max(A)))*255; % 归一化 b=circshift(s,[800 450]); %对图像矩阵im中的数据进行移位操作 b=rgb2gray(b) b=double(b) c=fft2(b); %傅里叶变换 e=fftshift(c); % 直流分量移到频谱中心 l=log(abs(e)); %对数变换 f=fftshift(c); %直流分量移到频谱中心 WW=real(f); %取傅里叶变换的实部B ZZ=imag(f); %取傅里叶变换的虚部 B=sqrt(WW.^2+ZZ.^2); %计算频谱府幅值 B=(B-min(min(B)))/(max(max(B)))*255; % 归一化 subplot(2,2,1);imshow(s);title('原图像') subplot(2,2,2);imshow(uint8(b));;title('平移图像') subplot(2,2,3);imshow(A);title('离散傅里叶频谱'); subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱')
在这段代码中,%2.1s并不是一个独立的变量或者关键字,它是作为字符串格式化控制符出现的。具体来说,%2.1s表示格式化输出一个字符串,其中2表示最小宽度为2,如果不足2位则在左侧补空格;.1表示精度为1,即只输出字符串中的第一个字符。但是在这段代码中,%2.1s并没有被用于实际的输出,可能是代码作者误用了该控制符,或者是没有删除掉该控制符的残留代码。
详细分析一下代码%2.1 s=imread('C:\Users\hp\Desktop\yy.PNG');%读入原图像 i=rgb2gray(s) i=double(i) j=fft2(i); %傅里叶变换 k=fftshift(j); % 直流分量移到频谱中心 l=log(abs(k)); %对数变换 m=fftshift(j); %直流分量移到频谱中心 RR=real(m); %取傅里叶变换的实部 II=imag(m); %取傅里叶变换的虚部 A=sqrt(RR.^2+II.^2); %计算频谱府幅值 A=(A-min(min(A)))/(max(max(A)))*255; % 归一化 b=circshift(s,[800 450]); %对图像矩阵im中的数据进行移位操作 b=rgb2gray(b) b=double(b) c=fft2(b); %傅里叶变换 e=fftshift(c); % 直流分量移到频谱中心 l=log(abs(e)); %对数变换 f=fftshift(c); %直流分量移到频谱中心 WW=real(f); %取傅里叶变换的实部B ZZ=imag(f); %取傅里叶变换的虚部 B=sqrt(WW.^2+ZZ.^2); %计算频谱府幅值 B=(B-min(min(B)))/(max(max(B)))*255; % 归一化 subplot(2,2,1);imshow(s);title('原图像') subplot(2,2,2);imshow(uint8(b));;title('平移图像') subplot(2,2,3);imshow(A);title('离散傅里叶频谱'); subplot(2,2,4);imshow(B);title('平移图像离散傅里叶频谱')
这段代码实现了对一幅图像进行傅里叶变换、频谱可视化及图像平移操作的功能。具体分析如下:
1. 读入原图像并将其转换为灰度图像:使用 imread 函数读入存储在指定路径下的图像,并使用 rgb2gray 函数将其转换为灰度图像。
2. 对原图像进行傅里叶变换并计算频谱幅值:使用 fft2 函数对灰度图像进行二维傅里叶变换,得到频率域图像,再使用 fftshift 函数将直流分量移到频谱中心。然后使用 log 函数对频谱幅值进行对数变换,最后根据傅里叶变换的实部和虚部计算频谱幅值并进行归一化。
3. 对图像进行平移操作:使用 circshift 函数对原始图像矩阵中的数据进行移位操作,得到平移后的图像。
4. 对平移后的图像进行傅里叶变换并计算频谱幅值:与步骤2相同,对平移后的图像进行傅里叶变换并计算频谱幅值。
5. 可视化结果:使用 subplot 函数将原图像、平移图像、原图像的傅里叶频谱及平移图像的傅里叶频谱分别显示在四个子图中,并使用 imshow 函数将图像显示出来,使用 title 函数给每个子图加上标题。
最终,这段代码输出了原图像、平移图像及它们的频谱幅值图像,以便于研究人员分析图像的频谱特征。
阅读全文