def setup_seed(seed):

时间: 2024-02-21 12:58:29 浏览: 26
这是一个函数定义,它的作用是设置随机数种子。在机器学习中,使用随机数种子可以确保实验结果的可重复性。函数的参数为一个整数种子值。当使用相同的种子值时,每次运行程序得到的随机数序列都是相同的。以下是函数的代码实现: ``` import random def setup_seed(seed): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.backends.cudnn.deterministic = True ``` 其中,random.seed()设置Python内置的随机数生成器的种子值;np.random.seed()设置numpy的随机数生成器的种子值;torch.manual_seed()设置PyTorch的CPU随机数生成器的种子值;torch.cuda.manual_seed()设置PyTorch的GPU随机数生成器的种子值;torch.backends.cudnn.deterministic = True设置使用cuDNN加速的卷积算法的随机数生成器的种子值。
相关问题

解释一下def setup_seed(seed): # seed=42 torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) random.seed(seed) np.random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmard = False torch.random.manual_seed(seed)

这段代码是用于设置随机种子,确保实验的可重复性。在深度学习的任务中,涉及到随机性,如权重的初始化、数据的划分、数据增强等,都会对最终的结果产生影响。通过设置随机种子,可以保证每次运行程序时得到相同的随机数序列,从而使实验结果可重现。 具体来说,这段代码首先通过torch.manual_seed(seed)设置PyTorch的随机种子为给定的seed值。然后,通过判断torch.cuda.is_available()来确定是否使用GPU,如果可用,就分别通过torch.cuda.manual_seed(seed)和torch.cuda.manual_seed_all(seed)设置GPU的随机种子。 接下来,通过random.seed(seed)、np.random.seed(seed)和torch.random.manual_seed(seed)分别设置Python标准库中random模块、NumPy库和PyTorch中的随机模块的随机种子。 最后,通过设置torch.backends.cudnn.deterministic = True和torch.backends.cudnn.benchmark = False来确保使用GPU加速时的结果一致性。 总之,这段代码的作用是将各个随机模块的种子设置为相同的值,以确保实验的可重复性和结果的一致性。

def setup_seed(seed): torch.manual_seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True torch.backends.cudnn.enabled = True

这段代码定义了一个名为 `setup_seed` 的函数,用于设置随机种子以确保结果的可复现性。随机种子在机器学习中常用于控制随机性,确保每次运行代码时得到相同的结果。 该函数接受一个参数 `seed`,它用于设置随机种子的值。通过该值,可以保证在相同的种子下,随机数生成器将生成相同的随机数序列。 函数内部执行了以下操作: 1. 使用 `torch.manual_seed(seed)` 设置 PyTorch 的随机种子。 2. 使用 `os.environ['PYTHONHASHSEED'] = str(seed)` 设置 Python 的哈希种子。 3. 使用 `torch.cuda.manual_seed(seed)` 设置 PyTorch CUDA 的随机种子。 4. 使用 `torch.cuda.manual_seed_all(seed)` 设置 PyTorch 所有 CUDA 设备的随机种子。 5. 使用 `np.random.seed(seed)` 设置 NumPy 的随机种子。 6. 使用 `random.seed(seed)` 设置 Python 内置的随机种子。 7. 将 `torch.backends.cudnn.benchmark` 设置为 `False`,以禁用自动寻找最快的卷积实现。 8. 将 `torch.backends.cudnn.deterministic` 设置为 `True`,以确保每次运行结果一致。 9. 将 `torch.backends.cudnn.enabled` 设置为 `True`,以启用使用 cuDNN 加速的操作。 通过调用该函数并传入一个确定的种子值,可以确保在相同的种子下,每次运行代码时都得到相同的结果。

相关推荐

def build_sequences(text, window_size): #text:list of capacity x, y = [],[] for i in range(len(text) - window_size): sequence = text[i:i+window_size] target = text[i+1:i+1+window_size] x.append(sequence) y.append(target) return np.array(x), np.array(y) # 留一评估:一组数据为测试集,其他所有数据全部拿来训练 def get_train_test(data_dict, name, window_size=8): data_sequence=data_dict[name][1] train_data, test_data = data_sequence[:window_size+1], data_sequence[window_size+1:] train_x, train_y = build_sequences(text=train_data, window_size=window_size) for k, v in data_dict.items(): if k != name: data_x, data_y = build_sequences(text=v[1], window_size=window_size) train_x, train_y = np.r_[train_x, data_x], np.r_[train_y, data_y] return train_x, train_y, list(train_data), list(test_data) def relative_error(y_test, y_predict, threshold): true_re, pred_re = len(y_test), 0 for i in range(len(y_test)-1): if y_test[i] <= threshold >= y_test[i+1]: true_re = i - 1 break for i in range(len(y_predict)-1): if y_predict[i] <= threshold: pred_re = i - 1 break return abs(true_re - pred_re)/true_re def evaluation(y_test, y_predict): mae = mean_absolute_error(y_test, y_predict) mse = mean_squared_error(y_test, y_predict) rmse = sqrt(mean_squared_error(y_test, y_predict)) return mae, rmse def setup_seed(seed): np.random.seed(seed) # Numpy module. random.seed(seed) # Python random module. os.environ['PYTHONHASHSEED'] = str(seed) # 为了禁止hash随机化,使得实验可复现。 torch.manual_seed(seed) # 为CPU设置随机种子 if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # 为当前GPU设置随机种子 torch.cuda.manual_seed_all(seed) # if you are using multi-GPU,为所有GPU设置随机种子 torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True

Failed cleaning build dir for numpy Failed to build numpy Installing collected packages: numpy Running setup.py install for numpy ... error Complete output from command /usr/bin/python3 -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-h5_vrlht/numpy/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-3koy23ws-record/install-record.txt --single-version-externally-managed --compile --user --prefix=: Running from numpy source directory. Note: if you need reliable uninstall behavior, then install with pip instead of using setup.py install: - pip install . (from a git repo or downloaded source release) - pip install numpy (last NumPy release on PyPi) Cythonizing sources Error compiling Cython file: ------------------------------------------------------------ ... cdef sfc64_state rng_state def __init__(self, seed=None): BitGenerator.__init__(self, seed) self._bitgen.state = <void *>&self.rng_state self._bitgen.next_uint64 = &sfc64_uint64 ^ ------------------------------------------------------------ _sfc64.pyx:90:35: Cannot assign type 'uint64_t (*)(void *) except? -1 nogil' to 'uint64_t (*)(void *) noexcept nogil' numpy/random/_bounded_integers.pxd.in has not changed Processing numpy/random/_sfc64.pyx Traceback (most recent call last): File "/tmp/pip-build-h5_vrlht/numpy/tools/cythonize.py", line 235, in <module> main() File "/tmp/pip-build-h5_vrlht/numpy/tools/cythonize.py", line 231, in main find_process_files(root_dir) File "/tmp/pip-build-h5_vrlht/numpy/tools/cythonize.py", line 222, in find_process_files process(root_dir, fromfile, tofile, function, hash_db) File "/tmp/pip-build-h5_vrlht/numpy/tools/cythonize.py", line 188, in process processor_function(fromfile, tofile) File "/tmp/pip-build-h5_vrlht/numpy/tools/cythonize.py", line 78, in process_pyx [sys.executable, '-m', 'cython'] + flags + ["-o", tofile, fromfile]) File "/usr/lib/python3.6/subprocess.py", line 311, in check_call raise CalledProcessError(retcode, cmd) subprocess.CalledProcessError: Command '['/usr/bin/python3', '-m', 'cython', '-3', '--fast-fail', '-o', '_sfc64.c', '_sfc64.pyx']' returned non-zero exit status 1. Traceback (most recent call last): File "<string>", line 1, in <module> File "/tmp/pip-build-h5_vrlht/numpy/setup.py", line 508, in <module> setup_package() File "/tmp/pip-build-h5_vrlht/numpy/setup.py", line 488, in setup_package generate_cython() File "/tmp/pip-build-h5_vrlht/numpy/setup.py", line 285, in generate_cython raise RuntimeError("Running cythonize failed!") RuntimeError: Running cythonize failed! ---------------------------------------- Command "/usr/bin/python3 -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-h5_vrlht/numpy/setup.py';f=getattr(tokenize, 'open', open)(__file__);code=f.read().replace('\r\n', '\n');f.close();exec(compile(code, __file__, 'exec'))" install --record /tmp/pip-3koy23ws-record/install-record.txt --single-version-externally-managed --compile --user --prefix=" failed with error code 1 in /tmp/pip-build-h5_vrlht/numpy/

最新推荐

recommend-type

grpcio-1.47.0-cp310-cp310-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

小程序项目源码-美容预约小程序.zip

小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序小程序项目源码-美容预约小程序v
recommend-type

MobaXterm 工具

MobaXterm 工具
recommend-type

grpcio-1.48.0-cp37-cp37m-linux_armv7l.whl

Python库是一组预先编写的代码模块,旨在帮助开发者实现特定的编程任务,无需从零开始编写代码。这些库可以包括各种功能,如数学运算、文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

扁平风格PPT可修改ppt下载(11).zip

扁平风格PPT可修改ppt下载(11).zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。