讲解这段代码:def read_img_and_convert_to_binary(filename): #读取待处理的图片 original_img = cv2.imread(filename) # print(original_img) #将原图分辨率缩小SCALSIZE倍,减少计算复杂度 original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA) #降噪 blur = cv2.GaussianBlur(original_img, (5, 5), 0) #将彩色图转化成灰度图 img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY) #图片开(opening)处理,用来降噪,使图片中的字符边界更圆滑,没有皱褶 kernel = np.ones((3, 3), np.uint8) opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel) kernel2 = np.ones((3,3), np.uint8) opening = cv2.dilate(opening, kernel2, iterations=1) # Otsu's thresholding after Gaussian filtering # 采用otsu阈值法将灰度图转化成只有0和1的二值图 blur = cv2.GaussianBlur(opening,(13,13),0) #ret, binary_img = cv2.threshold(img_gray, 120, 1, cv2.THRESH_BINARY_INV) ret,binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU) return original_img,binary_img
时间: 2024-04-09 22:29:58 浏览: 134
ibillxia-img.zip_matlab图像 处理 阈值_matlab读取img_yzfg程序是什么_灰度图像分割_画直方
这段代码是一个函数,名为`read_img_and_convert_to_binary`,它的功能是读取一张待处理的图片并将其转换为二值图像。下面是对代码的逐行解释:
1. `original_img = cv2.imread(filename)`:使用OpenCV库的`imread`函数读取指定路径的图片,并将其存储在`original_img`变量中。
2. `original_img = cv2.resize(original_img,(np.int(original_img.shape[1]/SCALSIZE),np.int(original_img.shape[0]/SCALSIZE)), interpolation=cv2.INTER_AREA)`:将原图的分辨率缩小`SCALSIZE`倍,通过调整图像大小减少计算复杂度,结果存储在`original_img`变量中。
3. `blur = cv2.GaussianBlur(original_img, (5, 5), 0)`:使用高斯模糊对`original_img`进行降噪处理,减少图像中的噪点,结果存储在`blur`变量中。
4. `img_gray = cv2.cvtColor(blur,cv2.COLOR_BGR2GRAY)`:将降噪后的彩色图像转换为灰度图像,便于后续处理,结果存储在`img_gray`变量中。
5. `kernel = np.ones((3, 3), np.uint8)`:创建一个3x3的矩阵,用于后续图像形态学操作。
6. `opening = cv2.morphologyEx(img_gray, cv2.MORPH_OPEN, kernel)`:对灰度图像进行形态学开运算(opening),通过腐蚀和膨胀操作使字符边界更加平滑,结果存储在`opening`变量中。
7. `kernel2 = np.ones((3,3), np.uint8)`:创建另一个3x3的矩阵,用于后续膨胀操作。
8. `opening = cv2.dilate(opening, kernel2, iterations=1)`:对开运算后的图像进行膨胀操作,进一步平滑字符边界,结果仍存储在`opening`变量中。
9. `blur = cv2.GaussianBlur(opening,(13,13),0)`:再次使用高斯模糊对图像进行降噪处理,参数(13,13)表示高斯核的大小。
10. `ret, binary_img = cv2.threshold(blur,0,1,cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)`:使用Otsu阈值法将灰度图像转换为二值图像。该阈值法会自动选择一个合适的阈值,将图像分为黑白两部分,结果存储在`binary_img`变量中。
11. 最后,函数返回原始图像`original_img`和二值图像`binary_img`。
这段代码主要进行了图像预处理的步骤,包括降噪、灰度化、形态学操作和阈值处理,最终得到二值图像以供后续处理使用。
阅读全文