def call(self, state): #熵log_prob x = self.fc1(state) x = self.fc2(x) mu = self.mu(x) log_std = self.log_std(x) log_std = tf.clip_by_value(log_std, -20, 2) std = tf.math.exp(log_std) dist = tfp.distributions.Normal(mu, std) action = dist.sample() log_prob = dist.log_prob(action) log_prob -= tf.reduce_sum(2 * (np.log(2) - action - tf.nn.softplus(-2 * action)), axis=1, keepdims=True) return action, log_prob
时间: 2023-12-17 21:04:00 浏览: 158
这段代码是一个Actor网络的前向传播函数,它接收一个状态state作为输入,返回一个动作action和相应的对数概率log_prob。
具体来说,这个函数首先通过两个全连接层(fc1和fc2)将状态state转换为一个mu和log_std向量,它们分别表示动作分布的均值和标准差。然后,使用这些向量创建一个正态分布dist,并从中采样一个动作action。接下来,函数计算log_prob,这是动作的对数概率,可以用于计算策略梯度。最后,它使用一个公式计算熵的贡献,并将其从log_prob中减去。
需要注意的是,这段代码使用了TensorFlow Probability(tfp)库中的分布函数和一些数学函数。其中,clip_by_value()函数用于将log_std截断在[-20, 2]的范围内,以避免标准差太小或太大。exp()函数用于计算标准差的指数,而log_prob的计算使用了一些数学公式,包括softmax()和reduce_sum()等函数。
总的来说,这段代码实现了一个连续动作空间的Actor网络,它将状态映射到一个动作和相应的对数概率,可以用于训练强化学习模型。
相关问题
a_, _, a_dist_ = self._build_a(self.S_, reuse=True, custom_getter=ema_getter) # replaced target parameters lya_a_, _, lya_a_dist_ = self._build_a(self.S_, reuse=True) # self.cons_a_input_ = tf.placeholder(tf.float32, [None, a_dim, 'cons_a_input_']) # self.log_pis = log_pis = self.a_dist.log_prob(self.a) self.log_pis = log_pis = self.a_dist.log_prob(self.a) self.prob = tf.reduce_mean(self.a_dist.prob(self.a))代码什么意思
这段代码是一部分深度强化学习算法的实现代码。具体来说,它构建了一个 actor 神经网络模型,并根据当前状态 S 来产生一个动作 a。其中,a 的概率分布由 a_dist_ 表示。同时,该代码中还计算了选择动作 a 的概率 log_pis 和平均概率 prob。这些结果可以用于计算损失函数,并通过反向传播来更新 actor 神经网络模型的参数,以提高其决策的准确性。同时,该代码中还使用了经验平均(exponential moving average,EMA)的技术来更新目标参数,以避免训练过程中的震荡。
class Actor(tf.keras.Model): def __init__(self, state_dim, action_dim, max_action): super(Actor, self).__init__() self.layer1 = tf.keras.layers.Dense(256, activation='relu') self.layer2 = tf.keras.layers.Dense(256, activation='relu') self.mean = tf.keras.layers.Dense(action_dim, activation='tanh') self.log_std = tf.keras.layers.Dense(action_dim, activation='tanh') self.max_action = max_action def call(self, state): x = self.layer1(state) x = self.layer2(x) mean = self.mean(x) * self.max_action log_std = self.log_std(x) log_std = tf.clip_by_value(log_std, -20, 2) std = tf.exp(log_std) dist = tfd.Normal(mean, std) action = dist.sample() log_prob = dist.log_prob(action) log_prob -= tf.reduce_sum(2 * (np.log(2) - action - tf.nn.softplus(-2 * action)), axis=1, keepdims=True) action = tf.tanh(action) return action, log_prob对该段代码进行解释
这段代码定义了一个Actor类,它是一个神经网络模型,用于预测在给定的状态下应该采取什么样的动作。具体地,这个Actor类包含以下几个成员变量和函数:
- 成员变量state_dim:表示状态(state)的维度;
- 成员变量action_dim:表示动作(action)的维度;
- 成员变量max_action:表示动作的最大值;
- 函数__init__:初始化Actor类,它定义了神经网络的结构,包括三个全连接层(layer1、layer2、mean)和一个用于输出动作的全连接层(log_std)。这些层分别包含256个神经元,其中前两个层采用ReLU激活函数,最后一个输出动作的层采用双曲正切函数(tanh)作为激活函数;
- 函数call:接收一个状态作为输入,返回一个动作和与该动作相关的概率值。该函数首先将输入状态通过前两个全连接层进行处理,然后使用mean层输出动作的均值,再使用log_std层输出动作的标准差的对数。这里采用双曲正切函数作为激活函数是因为它的输出范围是[-1,1],这样乘以self.max_action就可以得到[-self.max_action, self.max_action]之间的动作值。然后通过标准差和均值构建一个正态分布,并从中采样得到一个动作值。根据采样得到的动作值,计算该动作的概率,并使用一个公式对概率进行调整,最后将动作值通过tanh函数映射到[-1,1]之间。函数最终返回该动作值和对应的概率值的自然对数。
阅读全文