基于bp神经网络的入侵检测技术的matlab代码
时间: 2024-05-04 09:20:22 浏览: 106
以下是基于bp神经网络的入侵检测技术的MATLAB代码示例。本示例使用KDD Cup 1999数据集进行训练和测试。
首先,加载数据集:
```matlab
load('KDDCup99.mat'); % 加载数据集
```
接下来,将数据集分为训练集和测试集:
```matlab
train_data = KDDCup99(1:25000,1:41);
train_label = KDDCup99(1:25000,42);
test_data = KDDCup99(25001:end,1:41);
test_label = KDDCup99(25001:end,42);
```
然后,对数据进行预处理,包括归一化和独热编码:
```matlab
% 归一化
[train_data, PS] = mapminmax(train_data');
train_data = train_data';
test_data = mapminmax('apply',test_data',PS)';
% 独热编码
train_label = full(ind2vec(train_label'+1));
test_label = full(ind2vec(test_label'+1));
```
接着,创建并训练bp神经网络:
```matlab
net = feedforwardnet([10 5]); % 创建bp神经网络
net.divideParam.trainRatio = 0.8; % 设置训练集比例
net.divideParam.valRatio = 0.1; % 设置验证集比例
net.divideParam.testRatio = 0.1; % 设置测试集比例
net.trainParam.epochs = 100; % 设置训练轮数
net.trainParam.goal = 0.01; % 设置训练目标误差
net = train(net, train_data', train_label'); % 训练网络
```
最后,使用测试集评估网络性能:
```matlab
predict_label = net(test_data'); % 预测标签
[~, predict_label] = max(predict_label); % 转换为类别标签
[~, test_label] = max(test_label); % 转换为类别标签
accuracy = sum(predict_label == test_label) / length(test_label); % 计算准确率
disp(['Accuracy: ' num2str(accuracy)]); % 显示准确率
```
完整代码如下:
```matlab
load('KDDCup99.mat'); % 加载数据集
train_data = KDDCup99(1:25000,1:41);
train_label = KDDCup99(1:25000,42);
test_data = KDDCup99(25001:end,1:41);
test_label = KDDCup99(25001:end,42);
% 归一化
[train_data, PS] = mapminmax(train_data');
train_data = train_data';
test_data = mapminmax('apply',test_data',PS)';
% 独热编码
train_label = full(ind2vec(train_label'+1));
test_label = full(ind2vec(test_label'+1));
net = feedforwardnet([10 5]); % 创建bp神经网络
net.divideParam.trainRatio = 0.8; % 设置训练集比例
net.divideParam.valRatio = 0.1; % 设置验证集比例
net.divideParam.testRatio = 0.1; % 设置测试集比例
net.trainParam.epochs = 100; % 设置训练轮数
net.trainParam.goal = 0.01; % 设置训练目标误差
net = train(net, train_data', train_label'); % 训练网络
predict_label = net(test_data'); % 预测标签
[~, predict_label] = max(predict_label); % 转换为类别标签
[~, test_label] = max(test_label); % 转换为类别标签
accuracy = sum(predict_label == test_label) / length(test_label); % 计算准确率
disp(['Accuracy: ' num2str(accuracy)]); % 显示准确率
```
希望这个示例可以帮助你入门基于bp神经网络的入侵检测技术。
阅读全文