opencv穿线法实现单个数码管数字识别
时间: 2023-08-15 11:12:18 浏览: 184
OpenCV 穿线法(Hough 变换)是一种常用的图像处理方法,可以用于检测直线、圆等几何形状。在单个数码管数字识别中,我们可以使用穿线法来检测数码管的线段,然后根据线段的位置和长度来判断数字。
下面是实现步骤:
1. 首先读入图像,并进行灰度化和二值化处理。
```python
import cv2
import numpy as np
img = cv2.imread('digit.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY_INV)
```
2. 对二值化后的图像进行边缘检测,得到边缘图像。
```python
edges = cv2.Canny(thresh, 50, 150)
```
3. 对边缘图像进行穿线变换,得到所有直线的参数。
```python
lines = cv2.HoughLines(edges, 1, np.pi/180, 150)
```
4. 遍历所有直线,筛选出符合条件的线段,并记录线段的位置和长度。
```python
segments = []
for line in lines:
rho, theta = line[0]
if theta < np.pi/4 or theta > 3*np.pi/4:
x1 = int(rho/np.cos(theta))
x2 = int((rho - thresh.shape[0]*np.sin(theta))/np.cos(theta))
length = abs(x2 - x1)
if length > 10:
segments.append((x1, x2))
```
5. 根据线段的位置和长度,判断数字。
```python
digits = []
for i in range(7):
x_min = int(i*img.shape[1]/7)
x_max = int((i+1)*img.shape[1]/7)
segment = None
for s in segments:
if s[0] >= x_min and s[1] <= x_max:
if segment is None or abs(s[1]-s[0]) > abs(segment[1]-segment[0]):
segment = s
if segment is None:
digits.append(' ')
elif abs(segment[1]-segment[0]) < (x_max-x_min)/2:
digits.append('.')
else:
digits.append(str(int(round(1.0*(segment[0]+segment[1])/2/(x_max-x_min)*10))))
```
完整代码如下:
```python
import cv2
import numpy as np
img = cv2.imread('digit.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
_, thresh = cv2.threshold(gray, 50, 255, cv2.THRESH_BINARY_INV)
edges = cv2.Canny(thresh, 50, 150)
lines = cv2.HoughLines(edges, 1, np.pi/180, 150)
segments = []
for line in lines:
rho, theta = line[0]
if theta < np.pi/4 or theta > 3*np.pi/4:
x1 = int(rho/np.cos(theta))
x2 = int((rho - thresh.shape[0]*np.sin(theta))/np.cos(theta))
length = abs(x2 - x1)
if length > 10:
segments.append((x1, x2))
digits = []
for i in range(7):
x_min = int(i*img.shape[1]/7)
x_max = int((i+1)*img.shape[1]/7)
segment = None
for s in segments:
if s[0] >= x_min and s[1] <= x_max:
if segment is None or abs(s[1]-s[0]) > abs(segment[1]-segment[0]):
segment = s
if segment is None:
digits.append(' ')
elif abs(segment[1]-segment[0]) < (x_max-x_min)/2:
digits.append('.')
else:
digits.append(str(int(round(1.0*(segment[0]+segment[1])/2/(x_max-x_min)*10))))
print(digits)
```
其中,`digit.jpg` 是包含单个数码管的图片,可以根据实际情况进行替换。运行后输出的 `digits` 即为识别出的数字。
阅读全文