逐句注释import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score import pandas as pd data = pd.read_csv('xigua.csv') # 加载数据 print(data) print(data.shape) X = data.iloc[: ,1:3].values print(X) print(X.shape) plt.scatter(X[:, 0], X[:, 1], c = "red", marker = 'o', label = 'None') plt.ylabel('Sugar content') plt.xlabel('density') plt.legend(loc = 2) plt.show() #运用数学方法计算k的取值 score = [] for i in range(10): model = KMeans(n_clusters = i + 2) model.fit(X[:, 1:3]) #计算轮廓系数,系数取值范围[-1,1],越接近1的,k的值越好 score.append(silhouette_score(X[:, 0:2], model.labels_, metric = 'euclidean')) plt.figure(figsize = (5, 4)) plt.plot(range(2, 12, 1), score) plt.show() #n_clusters表示k的取值,也就是聚成簇的数量 #fit()函数:做的就是模型训练 kmeans = KMeans(n_clusters = 3, random_state = 0, ).fit(X[:, 1:3]) label_pred = kmeans.labels_#获取聚类标签 print(label_pred) centroids = kmeans.cluster_centers_ #获取聚类簇心 print(centroids) #绘制结果 x0 = X[label_pred == 0] x1 = X[label_pred == 1] plt.scatter(x0[:, 0], x0[:, 1], c = "red", marker = 'o', label = 'label0') plt.scatter(x1[:, 0], x1[:, 1], c = "green", marker = '*', label = 'label1') plt.ylabel('Sugar content') plt.xlabel('density') plt.legend(loc = 2) plt.show()

时间: 2023-09-12 12:07:35 浏览: 75
这份代码主要是对西瓜数据集进行聚类分析,下面是逐行的注释: ``` import matplotlib.pyplot as plt # 导入绘图库 from sklearn.cluster import KMeans # 导入kmeans聚类算法 from sklearn.metrics import silhouette_score # 导入轮廓系数评价指标 import pandas as pd # 导入数据处理库 data = pd.read_csv('xigua.csv') # 加载数据 print(data) # 打印数据 print(data.shape) # 打印数据的形状 X = data.iloc[:, 1:3].values # 取第2列和第3列作为特征 print(X) # 打印特征 print(X.shape) # 打印特征的形状 plt.scatter(X[:, 0], X[:, 1], c="red", marker='o', label='None') # 绘制散点图 plt.ylabel('Sugar content') # y轴标签 plt.xlabel('density') # x轴标签 plt.legend(loc=2) # 图例位置 plt.show() # 显示图像 score = [] # 初始化轮廓系数列表 for i in range(10): # 循环计算轮廓系数 model = KMeans(n_clusters=i + 2) # 聚类模型 model.fit(X[:, 1:3]) # 训练模型 # 计算轮廓系数,系数取值范围[-1,1],越接近1的,k的值越好 score.append(silhouette_score(X[:, 0:2], model.labels_, metric='euclidean')) plt.figure(figsize=(5, 4)) # 创建图像 plt.plot(range(2, 12, 1), score) # 绘制轮廓系数图像 plt.show() # 显示图像 kmeans = KMeans(n_clusters=3, random_state=0).fit(X[:, 1:3]) # 聚类模型 label_pred = kmeans.labels_ # 获取聚类标签 print(label_pred) # 打印聚类标签 centroids = kmeans.cluster_centers_ # 获取聚类簇心 print(centroids) # 打印聚类簇心 x0 = X[label_pred == 0] # 获取第一类样本 x1 = X[label_pred == 1] # 获取第二类样本 plt.scatter(x0[:, 0], x0[:, 1], c="red", marker='o', label='label0') # 绘制第一类样本的散点图 plt.scatter(x1[:, 0], x1[:, 1], c="green", marker='*', label='label1') # 绘制第二类样本的散点图 plt.ylabel('Sugar content') # y轴标签 plt.xlabel('density') # x轴标签 plt.legend(loc=2) # 图例位置 plt.show() # 显示图像 ``` 这段代码的目的是对西瓜数据集进行聚类分析,首先通过读取数据集获取特征,然后绘制散点图观察数据的分布情况,接着通过计算轮廓系数来确定最优的聚类簇数,再利用KMeans算法进行聚类分析,并绘制聚类结果的散点图。

相关推荐

import random import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score plt.rcParams['font.sans-serif'] = ['SimHei'] dataset=pd.read_excel('C:\\Users\\86180\\Desktop\\附件2整理.xlsx') dataset = dataset.drop(dataset.index[:1], inplace=False) dataset = dataset.drop(dataset.columns[:1], axis=1, inplace=False) #matrix=dataset.values matrix=np.array(dataset) matrix_xiang=matrix[:27] print(matrix_xiang[0]) print(matrix_xiang[-1]) print(matrix_xiang.shape) # matrix_chuan=matrix[-28:] # print(matrix_chuan[0]) # print(matrix_chuan[-1]) cluster_nums = range(2, 10) inertia_values = [] silhouette_scores = [] # 迭代不同聚类数量 for num in cluster_nums: # 创建K均值聚类模型 kmeans = KMeans(n_clusters=num) # 进行聚类 kmeans.fit(matrix_xiang) # 计算损失函数值和轮廓系数 inertia_values.append(kmeans.inertia_) silhouette_scores.append(silhouette_score(matrix_xiang, kmeans.labels_)) # 绘制肘部法则图像 plt.plot(cluster_nums, inertia_values, 'bo-') plt.xlabel('聚类数量') plt.ylabel('损失函数值') plt.title('肘部法则') plt.show() # 绘制轮廓系数图像 plt.plot(cluster_nums, silhouette_scores, 'ro-') plt.xlabel('聚类数量') plt.ylabel('轮廓系数') plt.title('轮廓系数') plt.show() kmeans = KMeans(n_clusters=7) # 进行聚类 kmeans.fit(matrix_xiang) labels = kmeans.labels_ # 打印每个食材的簇标签 for i, label in enumerate(labels): print(f"食材{i+1}的簇标签为:{label}")如何在这段代码中加入对聚类结果的评估和解释

import pandas as pd from sklearn.cluster import KMeans import matplotlib.pyplot as plt import numpy as np from sklearn.preprocessing import StandardScaler from sklearn import metrics beer=pd.read_csv('data.txt',encoding='gbk',sep='') X=beer[["calories","sodium","alcohol","cost"]] km=KMeans(n_clusters=3).fit(X) beer['cluster']=km.labels_ centers=km.cluster_centers_ plt.rcParams['font.size']=14 colors=np.array(['red','green','blue','yellow']) plt.scatter(beer["calories"], beer["alcohol"], c=colors[beer["cluster"]]) plt.scatter(centers[:,0], centers[:,2], linewidths=3,marker='+',s=300,c='black') plt.xlabel("Calories") plt.ylable("Alcohol") plt.suptitle("Calories and Alcohol") pd.plotting.scatter_matrix(beer[["calories", "sodium","alcohol","cost"]],s=100,alpha=1,c=colors[beer["cluster"]],figsize=(10,10)) plt.suptitle("original data") scaler=StandardScaler() X_scaled=scaler.fit_transform(X) km=KMeans(n_clusters=3).fit(X_scaled) beer["scaled_cluster"]=km.labels_ centers=km.cluster_centers_ pd.plotting.scatter_matrix(X, c=colors[beer.scaled_cluster],alpha=1,figsize=(10,10),s=100) plt.suptitle("standard data") score_scaled=metrics.silhouette_score(X, beer.scaled_cluster) score=metrics.silhouette_score(X, beer.cluster) print("得分为",score_scaled,score) scores=[] for k in range(2,20): labels=KMeans(n_clusters=k).fit(X).labels_ score=metrics.silhouette_score(X, labels) scores.append(score) for i in range(len(scores)): print((i+2,scores[i])) print(max(scores[i])) plt.figure() plt.plot(list(range(2,20)), scores,"ro") plt.xlabel("Number of Clusters Initialized") plt.ylabel("Sihouette Score") plt.suptitle("K parameter optimize") plt.show() scores=[] for k in range(2,20): labels=KMeans(n_clusters=k).fit(X_scaled).labels_ score=metrics.silhouette_score(X_scaled, labels) scores.append(score) for i in range(len(scores)): print((i+2,scores[i]))

import random import numpy as np import matplotlib.pyplot as plt 生成随机坐标点 def generate_points(num_points): points = [] for i in range(num_points): x = random.uniform(-10, 10) y = random.uniform(-10, 10) points.append([x, y]) return points 计算欧几里得距离 def euclidean_distance(point1, point2): return np.sqrt(np.sum(np.square(np.array(point1) - np.array(point2)))) K-means算法实现 def kmeans(points, k, num_iterations=100): num_points = len(points) # 随机选择k个点作为初始聚类中心 centroids = random.sample(points, k) # 初始化聚类标签和距离 labels = np.zeros(num_points) distances = np.zeros((num_points, k)) for i in range(num_iterations): # 计算每个点到每个聚类中心的距离 for j in range(num_points): for l in range(k): distances[j][l] = euclidean_distance(points[j], centroids[l]) # 根据距离将点分配到最近的聚类中心 for j in range(num_points): labels[j] = np.argmin(distances[j]) # 更新聚类中心 for l in range(k): centroids[l] = np.mean([points[j] for j in range(num_points) if labels[j] == l], axis=0) return labels, centroids 生成坐标点 points = generate_points(100) 对点进行K-means聚类 k_values = [2, 3, 4] for k in k_values: labels, centroids = kmeans(points, k) # 绘制聚类结果 colors = [‘r’, ‘g’, ‘b’, ‘y’, ‘c’, ‘m’] for i in range(k): plt.scatter([points[j][0] for j in range(len(points)) if labels[j] == i], [points[j][1] for j in range(len(points)) if labels[j] == i], color=colors[i]) plt.scatter([centroid[0] for centroid in centroids], [centroid[1] for centroid in centroids], marker=‘x’, color=‘k’, s=100) plt.title(‘K-means clustering with k={}’.format(k)) plt.show()import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.cluster import KMeans from sklearn.datasets import load_iris 载入数据集 iris = load_iris() X = iris.data y = iris.target K-means聚类 kmeans = KMeans(n_clusters=3, random_state=0).fit(X) 可视化结果 plt.scatter(X[:, 0], X[:, 1], c=kmeans.labels_) plt.xlabel(‘Sepal length’) plt.ylabel(‘Sepal width’) plt.title(‘K-means clustering on iris dataset’) plt.show()对这个算法的结果用SSE,轮廓系数,方差比率准则,DBI几个指标分析

最新推荐

recommend-type

Scrapy-1.8.2.tar.gz

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

search-log.zip

搜索记录,包括时间、搜索关键词等,用于PySpark案例练习
recommend-type

6-12.py

6-12
recommend-type

2-6.py

2-6
recommend-type

Scrapy-0.24.5-py2-none-any.whl

文件操作、数据分析和网络编程等。Python社区提供了大量的第三方库,如NumPy、Pandas和Requests,极大地丰富了Python的应用领域,从数据科学到Web开发。Python库的丰富性是Python成为最受欢迎的编程语言之一的关键原因之一。这些库不仅为初学者提供了快速入门的途径,而且为经验丰富的开发者提供了强大的工具,以高效率、高质量地完成复杂任务。例如,Matplotlib和Seaborn库在数据可视化领域内非常受欢迎,它们提供了广泛的工具和技术,可以创建高度定制化的图表和图形,帮助数据科学家和分析师在数据探索和结果展示中更有效地传达信息。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

2. 通过python绘制y=e-xsin(2πx)图像

可以使用matplotlib库来绘制这个函数的图像。以下是一段示例代码: ```python import numpy as np import matplotlib.pyplot as plt def func(x): return np.exp(-x) * np.sin(2 * np.pi * x) x = np.linspace(0, 5, 500) y = func(x) plt.plot(x, y) plt.xlabel('x') plt.ylabel('y') plt.title('y = e^{-x} sin(2πx)') plt.show() ``` 运行这段
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。