遗传算法求解船舶调度问题python代码
时间: 2024-07-28 07:01:10 浏览: 101
遗传算法是一种模拟自然选择过程的优化搜索技术,常用于解决复杂的组合优化问题。在Python中,我们可以使用GA(Genetic Algorithm)库如`deap`来求解船舶调度问题。这个问题通常涉及寻找最有效的船只装载货物路径,以便最小化运输成本或时间。
以下是一个简化的遗传算法求解船舶调度问题的示例代码:
```python
from deap import base, creator, tools
import random
# 创建问题模型(这里假设有若干艘船、多个港口和每个船只可以承载的货物量)
def fitness_func(solution):
# 根据实际问题定义计算适应度函数,比如总运输时间和成本
total_cost = calculate_total_cost(solution)
return total_cost,
# 初始化问题参数
creator.create("FitnessMax", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, fitness=creator.FitnessMax)
toolbox = base.Toolbox()
toolbox.register("population", tools.initRepeat, list, creator.Individual)
toolbox.register("evaluate", fitness_func)
toolbox.register("mate", tools.cxTwoPoint) # 交叉操作
toolbox.register("mutate", tools.mutShuffleIndexes, indpb=0.05) # 突变操作
toolbox.register("select", tools.selTournament, tournsize=3) # 选择操作
# 调整参数如种群大小、迭代次数等
pop_size = 100
num_generations = 100
# 主循环
for gen in range(num_generations):
offspring = toolbox.select(population, len(population))
offspring = [toolbox.clone(ind) for ind in offspring]
# 变异和交叉
for _ in range(len(offspring)):
if random.random() < 0.9: # 高概率进行交叉
toolbox.mate(offspring)
offspring.fitness.values = None # 更新个体适应度值
if random.random() < 0.1: # 少部分变异
toolbox.mutate(offspring)
offspring[0].fitness.values = None # 更新个体适应度值
# 计算新一代的适应度值
invalid_ind = [ind for ind in offspring if not ind.fitness.valid]
fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
for ind, fit in zip(invalid_ind, fitnesses):
ind.fitness.values = fit
# 选择并更新种群
population[:] = toolbox.select(population + offspring, pop_size)
# 最佳解决方案
best_solution = min(population, key=lambda ind: ind.fitness.values)
print(f"Best solution found: {best_solution}")
阅读全文