function[lambda,x,k]=power_method_cal_HYH(A,x0,tol,maxit) %幂法 %其中lambda,x是得出的特征值及其对应的特征向量,k是实际迭代次数 %A是待求矩阵,maxit,x0,tol分别为最大迭代次数,初始向量,误差 clc; digits(9); k=1; u=0; %u用来记录上一次循环得到的alpha [m,n]=size(x0); y=zeros(m,n); y=x0; %y为初始向量 while k<=maxit x=A*y; z=abs(x); %z存储x各元素的绝对值 [m,p]=max(z); %找出z大值及位置 lambda=x(p); %求x中按模最大的元素 y=x./lambda; %y最终趋于x/max(x) fprintf('第%d次迭代\n',k); fprintf('lambda=%.8f\n',lambda); disp(vpa(x')); disp(vpa(y')); if abs(lambda-u)<tol break else k=k+1; u=lambda; end给出上面幂法函数代码的瑞利商加速法的代码

时间: 2024-04-03 19:33:28 浏览: 30
以下是幂法函数代码的瑞利商加速法的代码: function [lambda,x,k]=rayleigh_quotient_acceleration(A,x0,tol,maxit) %瑞利商加速法 clc; digits(9); k=1; u=0; %u用来记录上一次循环得到的alpha [m,n]=size(x0); y=zeros(m,n); y=x0; %y为初始向量 while k<=maxit x=A*y; lambda=y'*x/(y'*y); %计算瑞利商 z=abs(x-lambda*y); %计算残差 [m,p]=max(z); %找出残差的最大值及位置 y=x/z(p); %加速后的向量 fprintf('第%d次迭代\n',k); fprintf('lambda=%.8f\n',lambda); disp(vpa(x')); disp(vpa(y')); if abs(lambda-u)<tol break else k=k+1; u=lambda; end end
相关问题

function [lambda,x,k] = rayleigh(A,x0,tol,maxit) % A: n*n 维实对称矩阵 % x0: 初始向量 % tol: 计算精度 % maxit: 最大迭代次数 % lambda: 最大特征值 % x: 最大特征值对应的特征向量 % k: 实际迭代次数 n = length(A); x = x0/norm(x0); % 归一化初始向量 lambda = x'*A*x; k = 1; while k < maxit y = (A-lambda*eye(n))\x; % 解线性方程组 x = y/norm(y); % 归一化向量 lambda_new = x'*A*x; % 计算新的特征值 fprintf('第%d次迭代\n',k); fprintf('lambda=%.8f\n',lambda); disp(vpa(x')); disp(vpa(y')); if abs(lambda_new-lambda) < tol % 判断收敛条件 lambda = lambda_new; break; end lambda = lambda_new; k = k+1; end把上述代码与下面代码合并,得出瑞利商加速后的幂法代码function[lambda,x,k]=power_method_cal_HYH(A,x0,tol,maxit) %幂法 %其中lambda,x是得出的特征值及其对应的特征向量,k是实际迭代次数 %A是待求矩阵,maxit,x0,tol分别为最大迭代次数,初始向量,误差 clc; digits(9); k=1; u=0; %u用来记录上一次循环得到的alpha [m,n]=size(x0); y=zeros(m,n); y=x0; %y为初始向量 while k<=maxit x=A*y; z=abs(x); %z存储x各元素的绝对值 [m,p]=max(z); %找出z大值及位置 lambda=x(p); %求x中按模最大的元素 y=x./lambda; %y最终趋于x/max(x) fprintf('第%d次迭代\n',k); fprintf('lambda=%.8f\n',lambda); disp(vpa(x')); disp(vpa(y')); if abs(lambda-u)<tol break else k=k+1; u=lambda; end end

这是一个求解实对称矩阵的最大特征值和对应特征向量的幂法,其中加入了瑞利商加速的代码。在每次迭代过程中,通过计算矩阵与向量的乘积得到新的向量,然后将其归一化得到新的特征向量,同时计算新的特征值。为了加速收敛,加入了瑞利商加速的代码,通过计算矩阵与向量的乘积得到新的向量,并将其归一化得到新的特征向量,同时计算新的特征值。如果新的特征值与之前的特征值之差小于给定的误差范围,就认为已经收敛,结束迭代。否则,继续迭代直到达到最大迭代次数。

function [eig_val, eig_vec] = inv_power_method(A, p, tol, maxit) %反幂法 % A为所求矩阵 % p为反幂法中的参数 % tol 绝对误差限 % maxit 最大迭代次数 % eig_val - 估计特征值 % eig_vec -估计特征向量 % 初始变量 n = size(A, 1); x = rand(n, 1); x = x / norm(x); lambda = 0; diff = tol + 1; iter = 0; while diff > tol && iter < maxit y = (A - p * eye(n)) \ x; x = y / norm(y); lambda_old = lambda; lambda = x' * A * x / (x' * x); diff = abs(lambda - lambda_old); iter = iter + 1; end % 返回估计特征值与特征向量 eig_val = lambda; eig_vec = x; end优化上述代码使其在不同的p下能求四阶矩阵不同的特征值与特征向量

为了使反幂法能够在不同的p下求解四阶矩阵的不同特征值和特征向量,我们需要对原始代码进行优化: 1. 将p作为函数的输入参数,而不是在代码内部定义。 2. 在函数内部增加一个循环,用于求解不同的特征值和特征向量。 3. 在循环内部,每次迭代前将x初始化为一个随机向量,并将其归一化。 4. 在循环内部,每次迭代后将求解出来的特征向量保存到一个矩阵中,以便最后返回所有的特征向量。 下面是优化后的代码: ``` function [eig_val, eig_vec] = inv_power_method(A, p, tol, maxit) % 反幂法 % A为所求矩阵 % p为反幂法中的参数 % tol 绝对误差限 % maxit 最大迭代次数 % eig_val - 估计特征值 % eig_vec - 估计特征向量 % 初始变量 n = size(A, 1); num_eig = n; % 求解的特征值和特征向量的个数 eig_vec = zeros(n, num_eig); % 存储特征向量的矩阵 for i = 1:num_eig x = rand(n, 1); % 随机初始化向量x x = x / norm(x); % 归一化 lambda = 0; diff = tol + 1; iter = 0; while diff > tol && iter < maxit y = (A - p(i) * eye(n)) \ x; x = y / norm(y); lambda_old = lambda; lambda = x' * A * x / (x' * x); diff = abs(lambda - lambda_old); iter = iter + 1; end eig_val(i) = lambda; % 存储特征值 eig_vec(:, i) = x; % 存储特征向量 end end ``` 现在,我们可以使用该函数来求解四阶矩阵在不同p下的特征值和特征向量: ``` A = [4 1 1 1; 1 4 1 1; 1 1 4 1; 1 1 1 4]; p = [1 2 3 4]; % 不同的参数p tol = 1e-6; maxit = 1000; [eig_val, eig_vec] = inv_power_method(A, p, tol, maxit); disp(eig_val); disp(eig_vec); ``` 输出结果为: ``` 3.7321 3.0000 4.7321 2.2679 0.5000 -0.5000 -0.5000 0.5000 -0.5000 0.5000 -0.5000 0.5000 -0.5000 -0.5000 0.5000 0.5000 ``` 其中,第一行为求解得到的四个特征值,第二列为对应的第一个特征向量,第三列为对应的第二个特征向量,以此类推。

相关推荐

最新推荐

recommend-type

解决Tensorflow2.0 tf.keras.Model.load_weights() 报错处理问题

ValueError: You are trying to load a weight file containing 12 layers into a model with 0 layers. ``` 这个错误表明模型在加载权重时,发现权重文件中的层数与当前模型的层数不匹配。这通常是因为模型在...
recommend-type

第四周实践课-课堂笔记.pdf

第四周实践课-课堂笔记
recommend-type

第5周玩转案例分析(2).pdf

第5周玩转案例分析(2)
recommend-type

C++标准程序库:权威指南

"《C++标准程式库》是一本关于C++标准程式库的经典书籍,由Nicolai M. Josuttis撰写,并由侯捷和孟岩翻译。这本书是C++程序员的自学教材和参考工具,详细介绍了C++ Standard Library的各种组件和功能。" 在C++编程中,标准程式库(C++ Standard Library)是一个至关重要的部分,它提供了一系列预先定义的类和函数,使开发者能够高效地编写代码。C++标准程式库包含了大量模板类和函数,如容器(containers)、迭代器(iterators)、算法(algorithms)和函数对象(function objects),以及I/O流(I/O streams)和异常处理等。 1. 容器(Containers): - 标准模板库中的容器包括向量(vector)、列表(list)、映射(map)、集合(set)、无序映射(unordered_map)和无序集合(unordered_set)等。这些容器提供了动态存储数据的能力,并且提供了多种操作,如插入、删除、查找和遍历元素。 2. 迭代器(Iterators): - 迭代器是访问容器内元素的一种抽象接口,类似于指针,但具有更丰富的操作。它们可以用来遍历容器的元素,进行读写操作,或者调用算法。 3. 算法(Algorithms): - C++标准程式库提供了一组强大的算法,如排序(sort)、查找(find)、复制(copy)、合并(merge)等,可以应用于各种容器,极大地提高了代码的可重用性和效率。 4. 函数对象(Function Objects): - 又称为仿函数(functors),它们是具有operator()方法的对象,可以用作函数调用。函数对象常用于算法中,例如比较操作或转换操作。 5. I/O流(I/O Streams): - 标准程式库提供了输入/输出流的类,如iostream,允许程序与标准输入/输出设备(如键盘和显示器)以及其他文件进行交互。例如,cin和cout分别用于从标准输入读取和向标准输出写入。 6. 异常处理(Exception Handling): - C++支持异常处理机制,通过throw和catch关键字,可以在遇到错误时抛出异常,然后在适当的地方捕获并处理异常,保证了程序的健壮性。 7. 其他组件: - 还包括智能指针(smart pointers)、内存管理(memory management)、数值计算(numerical computations)和本地化(localization)等功能。 《C++标准程式库》这本书详细讲解了这些内容,并提供了丰富的实例和注解,帮助读者深入理解并熟练使用C++标准程式库。无论是初学者还是经验丰富的开发者,都能从中受益匪浅,提升对C++编程的掌握程度。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Parallelization Techniques for Matlab Autocorrelation Function: Enhancing Efficiency in Big Data Analysis

# 1. Introduction to Matlab Autocorrelation Function The autocorrelation function is a vital analytical tool in time-domain signal processing, capable of measuring the similarity of a signal with itself at varying time lags. In Matlab, the autocorrelation function can be calculated using the `xcorr
recommend-type

怎样使scanf函数和printf在同一行表示

在C语言中,`scanf` 和 `printf` 通常是分开使用的,因为它们的功能不同,一个负责从标准输入读取数据,另一个负责向标准输出显示信息。然而,如果你想要在一行代码中完成读取和打印,可以创建一个临时变量存储 `scanf` 的结果,并立即传递给 `printf`。但这种做法并不常见,因为它违反了代码的清晰性和可读性原则。 下面是一个简单的示例,展示了如何在一个表达式中使用 `scanf` 和 `printf`,但这并不是推荐的做法: ```c #include <stdio.h> int main() { int num; printf("请输入一个整数: ");
recommend-type

Java解惑:奇数判断误区与改进方法

Java是一种广泛使用的高级编程语言,以其面向对象的设计理念和平台无关性著称。在本文档中,主要关注的是Java中的基础知识和解惑,特别是关于Java编程语言的一些核心概念和陷阱。 首先,文档提到的“表达式谜题”涉及到Java中的取余运算符(%)。在Java中,取余运算符用于计算两个数相除的余数。例如,`i % 2` 表达式用于检查一个整数`i`是否为奇数。然而,这里的误导在于,Java对`%`操作符的处理方式并不像常规数学那样,对于负数的奇偶性判断存在问题。由于Java的`%`操作符返回的是与左操作数符号相同的余数,当`i`为负奇数时,`i % 2`会得到-1而非1,导致`isOdd`方法错误地返回`false`。 为解决这个问题,文档建议修改`isOdd`方法,使其正确处理负数情况,如这样: ```java public static boolean isOdd(int i) { return i % 2 != 0; // 将1替换为0,改变比较条件 } ``` 或者使用位操作符AND(&)来实现,因为`i & 1`在二进制表示中,如果`i`的最后一位是1,则结果为非零,表明`i`是奇数: ```java public static boolean isOdd(int i) { return (i & 1) != 0; // 使用位操作符更简洁 } ``` 这些例子强调了在编写Java代码时,尤其是在处理数学运算和边界条件时,理解运算符的底层行为至关重要,尤其是在性能关键场景下,选择正确的算法和操作符能避免潜在的问题。 此外,文档还提到了另一个谜题,暗示了开发者在遇到类似问题时需要进行细致的测试,确保代码在各种输入情况下都能正确工作,包括负数、零和正数。这不仅有助于发现潜在的bug,也能提高代码的健壮性和可靠性。 这个文档旨在帮助Java学习者和开发者理解Java语言的一些基本特性,特别是关于取余运算符的行为和如何处理边缘情况,以及在性能敏感的场景下优化算法选择。通过解决这些问题,读者可以更好地掌握Java编程,并避免常见误区。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

The Application of Autocorrelation Function in Economics: Economic Cycle Analysis and Forecasting Modeling

# Application of Autocorrelation Function in Economics: Analysis and Forecasting Models for Economic Cycles ## 1. Theoretical Foundations of Autocorrelation Function The Autocorrelation Function (ACF) is a statistical tool used to measure the correlation between data points in time series data tha