基于深度学习的小黄脸表情包识别代码
时间: 2023-08-05 20:02:57 浏览: 148
很抱歉,我并不能提供完整的代码,但是可以给你提供一些实现表情包识别的基础代码片段和思路。
首先,我们需要导入一些必要的库:
```python
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
import seaborn as sns
from PIL import Image
from tqdm import tqdm
import cv2
import tensorflow as tf
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten, Conv2D, MaxPooling2D
from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau
```
接下来,我们需要读入数据集并进行预处理:
```python
# 设置数据集路径
train_dir = '/path/to/training/dataset'
test_dir = '/path/to/testing/dataset'
# 设置图像大小和批量大小
img_size = (48, 48)
batch_size = 64
# 使用ImageDataGenerator进行数据增强和预处理
train_datagen = ImageDataGenerator(rescale=1./255,
rotation_range=30,
shear_range=0.3,
zoom_range=0.3,
width_shift_range=0.4,
height_shift_range=0.4,
horizontal_flip=True,
fill_mode='nearest')
test_datagen = ImageDataGenerator(rescale=1./255)
# 读入训练集和测试集数据
train_data = train_datagen.flow_from_directory(train_dir,
target_size=img_size,
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical',
shuffle=True)
test_data = test_datagen.flow_from_directory(test_dir,
target_size=img_size,
color_mode='grayscale',
batch_size=batch_size,
class_mode='categorical',
shuffle=False)
```
接下来,我们可以构建卷积神经网络模型:
```python
model = Sequential()
# 第一层卷积层
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(img_size[0], img_size[1], 1)))
model.add(Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 第二层卷积层
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, kernel_size=(3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
# 全连接层
model.add(Flatten())
model.add(Dense(1024, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(7, activation='softmax'))
# 编译模型
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
```
最后,我们可以训练模型并进行测试:
```python
# 设置回调函数
earlystop = EarlyStopping(patience=10)
learning_rate_reduction = ReduceLROnPlateau(monitor='val_accuracy',
patience=2,
verbose=1,
factor=0.5,
min_lr=0.00001)
callbacks = [earlystop, learning_rate_reduction]
# 训练模型
epochs = 100
history = model.fit(train_data,
steps_per_epoch=train_data.n // train_data.batch_size,
epochs=epochs,
callbacks=callbacks,
validation_data=test_data,
validation_steps=test_data.n // test_data.batch_size)
# 测试模型
test_loss, test_acc = model.evaluate(test_data)
print('Test accuracy:', test_acc)
```
希望这些代码片段可以帮助你开始实现基于深度学习的小黄脸表情包识别。
阅读全文