p2 <- ggplot(df2, aes(date, yy)) + geom_point() p2 <- p2 + scale_x_date(date_labels = "%b%d") p2 <- p2 + facet_wrap( ~ type, scales = "free_y", nrow = 2)
时间: 2024-04-04 20:33:49 浏览: 113
这段代码使用ggplot2包中的函数创建一个散点图,并按照type列进行分面展示。具体来说,代码的含义如下:
- 使用ggplot函数创建一个散点图对象,其中date和yy作为aes函数的参数,用于指定X轴和Y轴的数据。geom_point函数指定了使用点来展示数据。
- 使用scale_x_date函数设置X轴的日期显示格式为"%b%d",即月份和日期。
- 使用facet_wrap函数将数据按照type列进行分面展示,scales参数设置为"free_y"表示每个分面的Y轴刻度不同,nrow参数设置为2表示将分面排列成两行。最后将分面展示的结果返回到p2对象中,可以使用print(p2)函数将图形显示出来。
相关问题
plot.SH <- function() { df2 <- data.frame( date = rep(dat$date,2), yy = c(dat$SH,dat$JL), type = rep(c("Shang Hai","Ji Lin"),each=n)) png("Fig-SH-JL-2022.png",width = 1024,height = 1024) p2 <- ggplot(df2, aes(date, yy)) + geom_point() p2 <- p2 + scale_x_date(date_labels = "%b%d") p2 <- p2 + facet_wrap( ~ type, scales = "free_y", nrow = 2) p2 + labs(y = "daily confirmed")+ labs(x = "date") + theme(axis.text = element_text(size = 17), axis.title.y = element_text(size = 17), strip.text = element_text(size = 17), legend.position = "none") dev.off() }
这是一个 R 语言的函数,用于绘制日期和每日确诊病例数的散点图,其中包含了上海和吉林两个地区的数据。函数中使用了 ggplot2 包来进行数据可视化,通过 facet_wrap 函数将两个地区的数据分别展示在两个子图中。函数还设置了图像的宽度、高度、标签和字体大小等参数,并最终将图像保存在 png 格式的文件中。
|sku_id| price| +------+-------+ |186976| 687.04| | act_date| act_time| user| act_type| sku| +----------+----------+-------+--------+------+------+ |2018-03-11|23:54:29.0| 267467| 2|186976| |2018-03-26|16:16:03.0| 709681| 2|327755| | act_date| act_time| user| act_type| sku| price| +----------+----------+-------+--------+------+------+ |2018-03-11|23:54:29.0| 267467| 2|186976|687.04| |2018-03-26|16:16:03.0| 709681| 2|327755|1588.5| 用spark程序实现以上需求,注意上面三个都是DataFrame
根据您提供的需求,我可以提供以下Spark程序实现:
```python
from pyspark.sql.functions import first
# 读取原始数据为DataFrame
df1 = spark.read.format("csv").option("header", "true").load("path/to/df1.csv")
df2 = spark.read.format("csv").option("header", "true").load("path/to/df2.csv")
df3 = spark.read.format("csv").option("header", "true").load("path/to/df3.csv")
# 合并df1和df2,以df1为基础
df_merge = df1.join(df2, on=["act_date", "act_time", "user", "act_type", "sku"], how="outer")
# 合并df_merge和df3,以df_merge为基础
df_result = df_merge.join(df3, on="sku", how="outer") \
.groupBy("sku") \
.agg(first("price").alias("price"))
# 打印结果
df_result.show()
```
上述代码中,我们首先使用`spark.read`方法将三个CSV文件读取为DataFrame。然后使用`join`方法合并df1和df2,以df1为基础,再将结果与df3合并,以df_merge为基础。最后使用`groupBy`和`agg`方法计算每个sku的唯一价格,并将结果存储在df_result中。最后使用`show`方法打印结果。
阅读全文