word2vec算法原理
时间: 2023-08-29 12:10:28 浏览: 144
word2vec是一种经典的词嵌入算法,最早由Google的Mikolov提出。它通过将词转化为向量的形式,实现了对词之间关系的定量度量和联系挖掘。word2vec算法有两种基本模型,分别是CBOW和Skip-Gram模型。CBOW模型通过上下文词预测目标词,而Skip-Gram模型则是通过目标词预测上下文词。这两种模型都是基于神经网络的训练方法,通过训练大量的语料库来学习词向量表示。这些词向量可以捕捉到词之间的语义和语法关系,从而可以应用于其他自然语言处理任务中。如果你对word2vec算法的原理感兴趣,可以参考\[1\]中的论文和\[2\]中的基础知识介绍。
#### 引用[.reference_title]
- *1* *3* [深度学习方法(十七):word2vec算法原理(1):跳字模型(skip-gram) 和连续词袋模型(CBOW)](https://blog.csdn.net/xbinworld/article/details/90416529)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
- *2* [学习:word2vec原理](https://blog.csdn.net/czp_374/article/details/86752999)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文