tensorflow用卷积神经网络mnist数据集代码
时间: 2023-09-18 09:14:37 浏览: 101
tensorflow操作mnist数据集
以下是使用TensorFlow实现卷积神经网络对MNIST数据集进行分类的代码:
```python
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# 加载MNIST数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# 定义占位符
x = tf.placeholder(tf.float32, [None, 784])
y_ = tf.placeholder(tf.float32, [None, 10])
# 将输入数据转换为图像格式
x_image = tf.reshape(x, [-1,28,28,1])
# 定义卷积层1
W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
b_conv1 = tf.Variable(tf.constant(0.1, shape=[32]))
h_conv1 = tf.nn.relu(tf.nn.conv2d(x_image, W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1)
# 定义池化层1
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 定义卷积层2
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(0.1, shape=[64]))
h_conv2 = tf.nn.relu(tf.nn.conv2d(h_pool1, W_conv2, strides=[1, 1, 1, 1], padding='SAME') + b_conv2)
# 定义池化层2
h_pool2 = tf.nn.max_pool(h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# 展开池化层2的输出,作为全连接层的输入
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
# 定义全连接层
W_fc1 = tf.Variable(tf.truncated_normal([7*7*64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(0.1, shape=[1024]))
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
# 定义输出层
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(0.1, shape=[10]))
y_conv = tf.matmul(h_fc1, W_fc2) + b_fc2
# 定义损失函数
cross_entropy = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y_conv))
# 定义优化器
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# 定义评测准确率的操作
correct_prediction = tf.equal(tf.argmax(y_conv,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
# 开始训练
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
for i in range(20000):
batch = mnist.train.next_batch(50)
if i % 100 == 0:
train_accuracy = accuracy.eval(feed_dict={x:batch[0], y_: batch[1]})
print('step %d, training accuracy %g' % (i, train_accuracy))
train_step.run(feed_dict={x: batch[0], y_: batch[1]})
print('test accuracy %g' % accuracy.eval(feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
```
这段代码中,我们定义了两个占位符x和y_,分别表示输入数据和标签。接着将输入数据转换为图像格式,并定义了两个卷积层和两个池化层,最后是一个全连接层和一个输出层。训练过程中,我们使用Adam优化器进行参数更新,并输出训练准确率和测试准确率。
阅读全文