function children = mutation(children, mutation_rate) [population_size, genome_size] = size(children); children = children; for i = 1 : population_size if rand() < mutation_rate mutated_individual = mutation_func(children(i, :),genome_size,mutation_rate); children(i, :) = mutated_individual; end end end这段代码有什么错误
时间: 2024-01-25 14:02:14 浏览: 73
这段代码的错误在于第 4 行,将 `children` 赋值给 `children` 并没有任何作用。
正确的代码应该是:
```matlab
function children = mutation(children, mutation_rate)
[population_size, genome_size] = size(children);
mutated_children = children;
for i = 1 : population_size
if rand() < mutation_rate
mutated_individual = mutation_func(children(i, :), genome_size, mutation_rate);
mutated_children(i, :) = mutated_individual;
end
end
children = mutated_children;
end
```
这样就可以将变异后的个体赋值给 `mutated_children`,并最终返回 `children`。
相关问题
这段代码function new_population = mutation_population(population, mutation_rate, mutation_func) [population_size, genome_size] = size(population); new_population = population; for i = 1 : population_size if rand() < mutation_rate mutated_individual = mutation_func(population(i, :)); new_population(i, :) = mutated_individual; end end end里的mutation_func函数代码示例
mutation_func 函数的代码示例可以是以下任意一种或其组合:
1. 随机选择一个基因并将其值随机变异为另一个值:
```
function mutated_individual = mutation_func(individual)
genome_size = length(individual);
mutated_individual = individual;
random_index = randi(genome_size);
new_value = rand(); % 或者根据问题领域的知识生成一个新值
mutated_individual(random_index) = new_value;
end
```
2. 针对数值型基因,以一定概率将其值增加或减少一个随机量:
```
function mutated_individual = mutation_func(individual)
genome_size = length(individual);
mutated_individual = individual;
for i = 1 : genome_size
if rand() < mutation_rate % mutation_rate 是传入的参数
random_amount = randn() * mutation_amount; % mutation_amount 是传入的参数
mutated_individual(i) = individual(i) + random_amount;
end
end
end
```
3. 针对二进制基因,以一定概率将其值进行翻转:
```
function mutated_individual = mutation_func(individual)
genome_size = length(individual);
mutated_individual = individual;
for i = 1 : genome_size
if rand() < mutation_rate % mutation_rate 是传入的参数
mutated_individual(i) = ~individual(i);
end
end
end
```
注意,以上仅是示例代码,具体实现要根据问题领域和实际需求进行调整。
%执行变异操作 children = mutation(children, mutation_rate);中的mutation函数代码示例
以下是一个简单的示例mutation函数代码,用于在一组基因中随机突变一小部分:
```
def mutation(children, mutation_rate):
for i in range(len(children)):
if random.random() < mutation_rate:
# 随机选择要突变的基因位置
mutation_index = random.randint(0, len(children[i]) - 1)
# 将该基因突变为一个随机值
new_gene = random.randint(0, 9)
children[i][mutation_index] = new_gene
return children
```
该函数接受两个参数,第一个参数`children`是一个二维列表,表示一组基因;第二个参数`mutation_rate`表示突变率,即每个基因被突变的概率。在函数内部,我们使用了一个for循环遍历所有基因,对于每个基因,如果随机数小于突变率,就会进行突变。突变时,我们随机选择一个基因位置,将该基因突变为一个随机值。最后,函数返回突变后的基因组。
阅读全文