function children = mutation(children, mutation_rate) [population_size, genome_size] = size(children); children = children; for i = 1 : population_size if rand() < mutation_rate mutated_individual = mutation_func(children(i, :),genome_size,mutation_rate); children(i, :) = mutated_individual; end end end这段代码有什么错误
时间: 2024-01-25 17:02:14 浏览: 79
这段代码的错误在于第 4 行,将 children
赋值给 children
并没有任何作用。
正确的代码应该是:
function children = mutation(children, mutation_rate)
[population_size, genome_size] = size(children);
mutated_children = children;
for i = 1 : population_size
if rand() < mutation_rate
mutated_individual = mutation_func(children(i, :), genome_size, mutation_rate);
mutated_children(i, :) = mutated_individual;
end
end
children = mutated_children;
end
这样就可以将变异后的个体赋值给 mutated_children
,并最终返回 children
。
相关问题
%执行变异操作 children = mutation(children, mutation_rate);中的mutation函数的matlab代码示例
下面是一个可能的mutation函数示例:
function mutated_population = mutation(population, mutation_rate)
% MUTATION function performs mutation on the population
% Input:
% - population: the current population [n_individuals x n_genes]
% - mutation_rate: the probability of mutation
% Output:
% - mutated_population: the population after mutation [n_individuals x n_genes]
[n_individuals, n_genes] = size(population);
mutated_population = population;
for i = 1:n_individuals
for j = 1:n_genes
if rand() < mutation_rate
% mutate gene with random value between 0 and 1
mutated_population(i,j) = rand();
end
end
end
end
这个mutation函数遍历所有个体和基因,并使用给定的mutation_rate概率对基因进行突变。在此示例中,我们将突变后的基因设置为0到1之间的随机值。
%执行变异操作 children = mutation(children, mutation_rate);中的mutation函数代码示例
以下是一个简单的示例mutation函数代码,用于在一组基因中随机突变一小部分:
def mutation(children, mutation_rate):
for i in range(len(children)):
if random.random() < mutation_rate:
# 随机选择要突变的基因位置
mutation_index = random.randint(0, len(children[i]) - 1)
# 将该基因突变为一个随机值
new_gene = random.randint(0, 9)
children[i][mutation_index] = new_gene
return children
该函数接受两个参数,第一个参数children
是一个二维列表,表示一组基因;第二个参数mutation_rate
表示突变率,即每个基因被突变的概率。在函数内部,我们使用了一个for循环遍历所有基因,对于每个基因,如果随机数小于突变率,就会进行突变。突变时,我们随机选择一个基因位置,将该基因突变为一个随机值。最后,函数返回突变后的基因组。
阅读全文
相关推荐

















