基于卷积神经网络的手写汉字识别
时间: 2023-11-16 12:01:00 浏览: 91
卷积神经网络实现手写字体识别
5星 · 资源好评率100%
卷积神经网络是一种深度学习模型,它在图像处理方面表现出色。基于卷积神经网络的手写汉字识别可以通过以下步骤实现:
1. 收集并准备手写汉字数据集,包括汉字图片和对应的标签。
2. 将数据集分为训练集和测试集。
3. 构建卷积神经网络模型,包括卷积层、池化层、全连接层等。
4. 使用训练集对模型进行训练,调整模型参数,使其能够准确地识别手写汉字。
5. 使用测试集对模型进行测试,评估模型的准确率和性能。
以下是一个基于PyTorch实现的手写汉字识别的代码示例:
```python
# 导入必要的库
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义卷积神经网络模型
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, kernel_size=3)
self.conv2 = nn.Conv2d(32, 64, kernel_size=3)
self.dropout1 = nn.Dropout2d(0.25)
self.dropout2 = nn.Dropout2d(0.5)
self.fc1 = nn.Linear(64 * 12 * 12, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.dropout2(x)
x = self.fc2(x)
output = nn.functional.log_softmax(x, dim=1)
return output
# 加载数据集
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST('data', train=True, download=True, transform=transform)
test_dataset = datasets.MNIST('data', train=False, transform=transform)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=1000, shuffle=True)
# 定义损失函数和优化器
model = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
# 训练模型
for epoch in range(10):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 测试模型
model.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = model(data)
test_loss += criterion(output, target).item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)
print('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)'.format(
test_loss, correct, len(test_loader.dataset), accuracy))
```
阅读全文