Transformer架构
时间: 2023-07-14 21:07:37 浏览: 173
Transformer同样基于编码器-解码器架构
Transformer架构是一种用于处理序列数据的深度学习模型架构,广泛应用于自然语言处理任务中。它在2017年被提出,并在机器翻译任务中取得了很大的成功。
Transformer架构的核心思想是自注意力机制(self-attention mechanism),它能够有效地捕捉输入序列中不同位置之间的依赖关系。自注意力机制通过计算每个位置与其他位置之间的相对重要性来对输入进行加权聚合,从而产生上下文表示。这种机制使得模型能够同时考虑整个输入序列的上下文信息,而不仅仅是局部或固定窗口的上下文。
Transformer架构由编码器(encoder)和解码器(decoder)组成。编码器负责将输入序列编码成上下文表示,而解码器则利用编码器的输出和自注意力机制来生成输出序列。
Transformer架构的优点包括并行计算的能力、对长距离依赖关系的建模能力以及有效地处理输入序列的能力。这使得它成为处理自然语言处理任务的有力工具,如机器翻译、文本生成、对话系统等。
阅读全文