resnet18加入ema注意力机制
时间: 2023-12-23 09:27:13 浏览: 390
```python
# 在ResNet18中嵌入EMA(Exponential Moving Average)注意力机制的示例代码如下:
import torch
import torch.nn as nn
import torch.nn.functional as F
class EMAAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
super(EMAAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction_ratio),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction_ratio, in_channels),
nn.Sigmoid()
)
self.register_buffer('ema', torch.zeros(1))
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
self.ema = 0.1 * y.mean((0, 2, 3)) + 0.9 * self.ema
return F.relu(x * self.ema.view(1, c, 1, 1))
# 在ResNet18中使用EMA注意力机制
class BasicBlock(nn.Module):
def __init__(self, in_planes, planes, stride=1, downsample=None):
super(BasicBlock, self).__init__()
self.ema_attention = EMAAttention(in_planes)
# 其他部分省略
def forward(self, x):
# 其他部分省略
out = self.ema_attention(out)
# 其他部分省略
```
阅读全文