引导滤波matlab
时间: 2023-09-27 07:04:37 浏览: 153
引导滤波是一种平滑滤波算法,主要用于图像降噪和边缘保持。在Matlab中,可以使用"imguidedfilter"函数来实现引导滤波。该函数的语法如下:
J = imguidedfilter(I, guideImg, varargin)
其中,I是输入图像,guideImg是引导图像,J是输出的滤波结果。你可以根据需要进行相应的参数设置,如指定滤波窗口的大小、设置平滑参数等。
相关问题
引导滤波matlab代码实现,引导图滤波(Guided Image Filtering)原理以及OpenCV实现
引导滤波(Guided Image Filtering)是一种能够保留图像细节的图像滤波方法,通过引导图像的辅助作用,对待处理图像进行滤波。其主要思想是根据引导图像的特征来调整滤波器的权重,从而使得滤波器更加适应于图像的结构和纹理特征,达到保留细节的效果。
具体实现方法如下:
1. 对待处理图像和引导图像进行预处理,计算它们的均值和方差。
2. 对引导图像进行高斯滤波,得到平滑后的引导图像。
3. 计算待处理图像和引导图像的协方差,并计算得到待处理图像的均值和方差。
4. 计算待处理图像和引导图像的相关系数,并根据相关系数和平滑后的引导图像计算得到滤波器的权重。
5. 根据滤波器的权重和待处理图像的均值、方差,对待处理图像进行滤波。
下面是引导滤波的Matlab代码实现:
```matlab
function [q] = guidedfilter(I, p, r, eps)
% guidedfilter: Guided image filtering
%
% Input:
% - I: guidance image (should be a gray-scale/single channel image)
% - p: filtering input image
% - r: radius of filter
% - eps: regularization parameter
%
% Output:
% - q: filtering output image
%
% Reference:
% Kaiming He, Jian Sun, and Xiaoou Tang, "Guided Image Filtering,"
% IEEE Transactions on Pattern Analysis and Machine Intelligence,
% Vol. 35, No. 6, pp. 1397-1409, June 2013.
%
% Author: hqli
% Email: hqli@pku.edu.cn
% Date: 2016-11-05
%
% Check inputs
if (ndims(I)~=2)
error('The guidance image should be a gray-scale/single channel image.');
end
if (ndims(p)==2)
% Single-channel image
[hei, wid] = size(p);
nCh = 1;
else
% Multi-channel image
[hei, wid, nCh] = size(p);
end
if (size(I,1)~=hei || size(I,2)~=wid)
error('The size of the guidance image should be the same as the input image.');
end
% Compute mean and covariance matrices
mean_I = imboxfilt(I, r) ./ (r^2);
mean_p = zeros(hei, wid, nCh);
for ii=1:nCh
mean_p(:,:,ii) = imboxfilt(p(:,:,ii), r) ./ (r^2);
end
mean_Ip = zeros(hei, wid, nCh);
for ii=1:nCh
mean_Ip(:,:,ii) = imboxfilt(I.*p(:,:,ii), r) ./ (r^2);
end
cov_Ip = mean_Ip - mean_I.*mean_p;
% Compute local variances and covariances
var_I = imboxfilt(I.^2, r) ./ (r^2) - mean_I.^2;
var_p = zeros(hei, wid, nCh);
for ii=1:nCh
var_p(:,:,ii) = imboxfilt(p(:,:,ii).^2, r) ./ (r^2) - mean_p(:,:,ii).^2;
end
% Compute weight and bias
a = zeros(hei, wid, nCh);
b = zeros(hei, wid, nCh);
for ii=1:nCh
a(:,:,ii) = cov_Ip(:,:,ii) ./ (var_I + eps);
b(:,:,ii) = mean_p(:,:,ii) - a(:,:,ii) .* mean_I;
end
% Compute the filtering output
q = zeros(size(p));
for ii=1:nCh
q(:,:,ii) = imboxfilt(a(:,:,ii).*p(:,:,ii) + b(:,:,ii), r) ./ (r^2);
end
```
其中,I为引导图像,p为待处理图像,r为滤波器的半径,eps为正则化参数。函数返回值q为滤波后的图像。
下面是引导滤波的OpenCV实现:
```c++
cv::Mat guidedFilter(const cv::Mat& I, const cv::Mat& p, int r, double eps)
{
// Check inputs
CV_Assert(I.channels() == 1);
CV_Assert(p.channels() == 1 || p.channels() == I.channels());
CV_Assert(I.rows == p.rows && I.cols == p.cols);
// Convert input images to CV_64FC1
cv::Mat I_double, p_double;
I.convertTo(I_double, CV_64FC1);
p.convertTo(p_double, CV_64FC1);
// Compute mean and covariance matrices
cv::Mat mean_I, mean_p, mean_Ip, cov_Ip, var_I, var_p;
cv::boxFilter(I_double, mean_I, CV_64FC1, cv::Size(r, r));
cv::boxFilter(p_double, mean_p, CV_64FC1, cv::Size(r, r));
cv::boxFilter(I_double.mul(p_double), mean_Ip, CV_64FC1, cv::Size(r, r));
cov_Ip = mean_Ip - mean_I.mul(mean_p);
cv::boxFilter(I_double.mul(I_double), var_I, CV_64FC1, cv::Size(r, r));
var_I -= mean_I.mul(mean_I);
if (p.channels() == 1)
{
cv::boxFilter(p_double.mul(p_double), var_p, CV_64FC1, cv::Size(r, r));
var_p -= mean_p.mul(mean_p);
}
else
{
std::vector<cv::Mat> p_channels(p.channels());
cv::split(p_double, p_channels);
var_p = cv::Mat::zeros(I.rows, I.cols, CV_64FC(p.channels()));
for (int i = 0; i < p.channels(); i++)
{
cv::boxFilter(p_channels[i].mul(p_channels[i]), var_p.channels(i), CV_64FC1, cv::Size(r, r));
var_p.channels(i) -= mean_p.channels(i).mul(mean_p.channels(i));
}
}
// Compute weight and bias
cv::Mat a, b;
a = cov_Ip / (var_I + eps);
b = mean_p - a.mul(mean_I);
// Compute the filtering output
cv::Mat q;
if (p.channels() == 1)
{
cv::boxFilter(a.mul(p_double) + b, q, CV_64FC1, cv::Size(r, r));
}
else
{
std::vector<cv::Mat> q_channels(p.channels());
for (int i = 0; i < p.channels(); i++)
{
cv::boxFilter(a.channels(i).mul(p_channels[i]) + b.channels(i), q_channels[i], CV_64FC1, cv::Size(r, r));
}
cv::merge(q_channels, q);
}
return q;
}
```
其中,I为引导图像,p为待处理图像,r为滤波器的半径,eps为正则化参数。函数返回值q为滤波后的图像。
引导滤波代码matlab
引导滤波是一种经典的图像处理方法,其目的是通过保留和增强图像的边缘来去除图像中的噪声。在Matlab中,可以使用以下步骤实现引导滤波。
首先,读入待处理的图像。可以使用imread函数将图像读入Matlab中。
接下来,将彩色图像转化为灰度图像。在Matlab中,可以使用rgb2gray函数将彩色图像转化为灰度图像。
然后,确定引导图像。引导图像是用来指导滤波过程的一张图像,通常是输入图像的梯度图像或者是输入图像的某个特征图像。这里可以选择使用输入图像的梯度图像作为引导图像。
接着,计算引导图像的平均值。可以使用matlab中的imfilter函数进行局部均值滤波来计算平均值。
然后,计算输入图像的平均值。同样使用imfilter函数计算输入图像的局部均值。
接下来,计算输入图像和引导图像的协方差。可以使用matlab中的imfilter函数来计算滤波后的图像的协方差。
最后,计算滤波后的图像。可以使用以下公式计算滤波后的结果:filtered_image = mean_I + (covariance + epsilon) / (mean_G + epsilon) * (input_image - mean_I)。其中,mean_I表示输入图像的局部均值,mean_G表示引导图像的局部均值,covariance表示输入图像和引导图像的协方差,epsilon是一个很小的数值,用来避免除零错误。
以上就是实现引导滤波的Matlab代码的基本步骤。值得注意的是,具体的代码实现可能还需要进行参数调节和对输出结果进行调整,以获得最佳的滤波效果。
阅读全文