单机多卡训练卷积神经网络
时间: 2023-12-03 14:40:24 浏览: 98
基于引用[1]提供的信息,我们可以使用PyTorch实现单机多卡训练卷积神经网络。具体步骤如下:
1.导入必要的库和模块
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.nn.parallel import DistributedDataParallel as DDP
```
2.定义模型
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84,10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
```
3.定义训练函数
```python
def train(gpu, args):
rank = args.nr * args.gpus + gpu
dist.init_process_group(backend='nccl', init_method='env://', world_size=args.world_size, rank=rank)
torch.manual_seed(0)
model = Net().cuda(gpu)
ddp_model = DDP(model, device_ids=[gpu])
criterion = nn.CrossEntropyLoss().cuda(gpu)
optimizer = optim.SGD(ddp_model.parameters(), lr=args.lr, momentum=args.momentum)
train_sampler = torch.utils.data.distributed.DistributedSampler(args.train_dataset, num_replicas=args.world_size, rank=rank)
train_loader = torch.utils.data.DataLoader(args.train_dataset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers, pin_memory=True, sampler=train_sampler)
for epoch in range(args.epochs):
train_sampler.set_epoch(epoch)
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.cuda(gpu, non_blocking=True), target.cuda(gpu, non_blocking=True)
optimizer.zero_grad()
output = ddp_model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
if batch_idx % args.log_interval == 0:
print('Rank [{}] Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(rank, epoch, batch_idx * len(data), len(train_sampler), 100. * batch_idx / len(train_loader), loss.item()))
```
4.定义主函数
```python
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batch-size', type=int, default=64)
parser.add_argument('--epochs', type=int, default=10)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--momentum', type=float, default=0.5)
parser.add_argument('--num-workers', type=int, default=4)
parser.add_argument('--gpus', type=int, default=2)
parser.add_argument('--nr', type=int, default=0)
parser.add_argument('--world-size', type=int, default=2)
parser.add_argument('--dist-url', default='tcp://127.0.0.1:23456', type=str)
parser.add_argument('--dist-backend', default='nccl', type=str)
args = parser.parse_args()
args.world_size = args.gpus * args.world_size
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = '8888'
mp.spawn(train, nprocs=args.gpus, args=(args,))
```
5.运行主函数
```python
if __name__ == '__main__':
main()
```
以上就是使用PyTorch实现单机多卡训练卷积神经网络的步骤。需要注意的是,这里使用了分布式数据并行(DDP)来实现单机多卡训练,因此需要在每个进程中初始化分布式环境。
阅读全文